19-4750; Rev 1; 07/11 46 of 194 The delay of data at the input of the Jitter Buffer is caused by fixed and PDV (" />
參數(shù)資料
型號: DS34S132GN+
廠商: Maxim Integrated Products
文件頁數(shù): 136/194頁
文件大?。?/td> 0K
描述: IC TDM OVER PACKET 676-BGA
產(chǎn)品培訓(xùn)模塊: Lead (SnPb) Finish for COTS
Obsolescence Mitigation Program
標(biāo)準(zhǔn)包裝: 40
功能: TDM-over-Packet(TDMoP)
接口: TDMoP
電路數(shù): 1
電源電壓: 1.8V, 3.3V
工作溫度: -40°C ~ 85°C
安裝類型: 表面貼裝
封裝/外殼: 676-BGA
供應(yīng)商設(shè)備封裝: 676-PBGA(27x27)
包裝: 管件
其它名稱: 90-34S13+2N0
第1頁第2頁第3頁第4頁第5頁第6頁第7頁第8頁第9頁第10頁第11頁第12頁第13頁第14頁第15頁第16頁第17頁第18頁第19頁第20頁第21頁第22頁第23頁第24頁第25頁第26頁第27頁第28頁第29頁第30頁第31頁第32頁第33頁第34頁第35頁第36頁第37頁第38頁第39頁第40頁第41頁第42頁第43頁第44頁第45頁第46頁第47頁第48頁第49頁第50頁第51頁第52頁第53頁第54頁第55頁第56頁第57頁第58頁第59頁第60頁第61頁第62頁第63頁第64頁第65頁第66頁第67頁第68頁第69頁第70頁第71頁第72頁第73頁第74頁第75頁第76頁第77頁第78頁第79頁第80頁第81頁第82頁第83頁第84頁第85頁第86頁第87頁第88頁第89頁第90頁第91頁第92頁第93頁第94頁第95頁第96頁第97頁第98頁第99頁第100頁第101頁第102頁第103頁第104頁第105頁第106頁第107頁第108頁第109頁第110頁第111頁第112頁第113頁第114頁第115頁第116頁第117頁第118頁第119頁第120頁第121頁第122頁第123頁第124頁第125頁第126頁第127頁第128頁第129頁第130頁第131頁第132頁第133頁第134頁第135頁當(dāng)前第136頁第137頁第138頁第139頁第140頁第141頁第142頁第143頁第144頁第145頁第146頁第147頁第148頁第149頁第150頁第151頁第152頁第153頁第154頁第155頁第156頁第157頁第158頁第159頁第160頁第161頁第162頁第163頁第164頁第165頁第166頁第167頁第168頁第169頁第170頁第171頁第172頁第173頁第174頁第175頁第176頁第177頁第178頁第179頁第180頁第181頁第182頁第183頁第184頁第185頁第186頁第187頁第188頁第189頁第190頁第191頁第192頁第193頁第194頁
DS34S132 DATA SHEET
19-4750; Rev 1; 07/11
46 of 194
The delay of data at the input of the Jitter Buffer is caused by fixed and PDV (variable) delay parameters according
to the equation below.
Maximum Jitter Buffer Input Delay = PCT + fixed transmission and circuit processing delay + Total PDV
PCT (Packet Creation Time) is a fixed delay that is equal to the amount of time that it takes to receive enough data
from a TDM Port to fill the Payload section of a PW Bundle. The B.BCDR1.PMS (Packet Payload Size) setting is
programmed according to the desired PCT value using the equations below. For example it may be desirable for a
CES payload to carry 8 frames of data (from the equations below, PCT = 1 ms and PMS = 8).
T1/E1 Nx64 CES: B.BCDR1.PMS = “# T1/E1 Frames per Packet Payload” = PCT ÷ 125us
T1 SAT:
B.BCDR1.PMS = “# bytes per Packet Payload” = PCT ÷ 5.2us
E1 SAT:
B.BCDR1.PMS = “# bytes per Packet Payload” = PCT ÷ 3.9us
“Slow rate” SAT:
B.BCDR1.PMS = “# bytes per Packet Payload” = PCT ÷ (8/fTDM)
(where “fTDM” is equal to the data bit rate at the TDM Port).
The fixed transmission delay will differ for each PW connection according to the distance between the end points
(e.g. a signal may take 500 us to travel 100 km). The fixed circuit processing delay varies according to the type and
number of network nodes (e.g. routers) and the S132 fixed circuit delays. These fixed delays do not affect the Clock
Recovery performance or Jitter Buffer depth (unless they change, e.g. when switching to a backup/protection line).
PDV is caused when congestion occurs at a port that has more than one packet waiting to be transmitted and can
be caused by circuits that process data in “blocks” (delayed waiting to finish a block).
There are several PDV parameters that are identified in the equation below and described in Table 9-6.
Total PDV = Network PDV + S132 Ether Media PDV + S132 Schedule PDV + S132 BFD PDV + S132 MTIE PDV
Table 9-6. PDV Parameters that affect the latency of a PW packet
PDV Type
Description
Network
PDV:
Network PDV is generated by the packet switches between the two PW End Points. Each packet
switch becomes congested when more than one incoming switch port has a packet to send to the
same outgoing switch Port (one incoming packet must wait for the other). For example some
networks may assume that each packet switch might introduce up to 1 ms of PDV.
S132
Ethernet
Media
PDV:
S132 Ethernet Media PDV is generated when the Ethernet Port Line Rate (100 Mb/s or 1000 Mb/s)
delays the delivery of the packet because the line rate is unable to transmit infinitely fast. For
example if 32 packets that are 64 bytes in length, are waiting to be transmitted at the S132 Ethernet
Port, the last packet will not be transmitted until after the 31 other packets are transmitted. The
Ethernet Media PDV can be a large number. For this reason, the 1000 Mb/s line rate should be used
whenever possible to minimize this parameter. The Ethernet Media PDV is dependent on the
Ethernet line rate, the number of Bundles, the size of the Ethernet packets that are being transmitted
and includes the Ethernet 20-byte Inter-packet Gap (IPG). The equation below assumes all of the
Bundles use the same packet size. Table 9-7 provides 6 examples that use this equation.
S132 Ethernet Media PDV = [# Bundles * (# pkt bytes + 20 byte IPG) * 8 bits/byte] ÷ line rate
S132 RXP
& TXP
Scheduling
PDV:
The S132 RXP and TXP Scheduling PDV values are caused by the limited rate at which data can be
transferred to/from the SDRAM. Similar to the Ethernet Media PDV, if 32 packets are ready (in the
SDRAM) to be sent, the S132 Buffer Manager can only retrieve one packet at a time and the last
packet is delayed waiting for the other 31 packets. This PDV parameter increases the Total PDV only
if the Ethernet Media is able to forward packets faster than the S132 Buffer Manager can retrieve the
packets from the SDRAM (i.e. the Scheduling PDV is “hidden” by the Ethernet Media PDV as long as
the Buffer Manager can keep up with the Ethernet Port transmission rate).
S132 RXP
& TXP BFD
PDV:
The S132 RXP and TXP BFD PDV values are caused as the S132 waits for sufficient data to fill the
SDRAM Staging Buffers. The depths of these buffers are programmed using the BFD registers to
determine the data block size that is used to store and retrieve data from the SDRAM. This PDV
parameter can vary from 125 us to 500 us according to the BFD setting (one in each direction).
S132 RXP
MTIE PDV:
The S132 MTIE PDV is generated by the varying output frequency of the Clock Recovery Engine.
Before the Clock Recovery Engine has locked to the incoming RXP packet rate, the transmit TDM
Port line rate can vary (slightly) adding to the Total PDV. After the Clock Recovery Engine is locked
to the RXP data rate, this parameter becomes insignificant. This parameter is difficult to characterize,
相關(guān)PDF資料
PDF描述
DS34T102GN+ IC TDM OVER PACKET 484TEBGA
DS3501U+H IC POT NV 128POS HV 10-USOP
DS3502U+ IC POT DGTL NV 128TAP 10-MSOP
DS3503U+ IC POT DGTL NV 128TAP 10-MSOP
DS3897MX IC TXRX BTL TRAPEZIODAL 20-SOIC
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
DS34S132GN+ 功能描述:通信集成電路 - 若干 32Port TDM-Over-Pack Transport Device RoHS:否 制造商:Maxim Integrated 類型:Transport Devices 封裝 / 箱體:TECSBGA-256 數(shù)據(jù)速率:100 Mbps 電源電壓-最大:1.89 V, 3.465 V 電源電壓-最小:1.71 V, 3.135 V 電源電流:50 mA, 225 mA 最大工作溫度:+ 85 C 最小工作溫度:- 40 C 封裝:Tube
DS34S132GNA2+ 功能描述:通信集成電路 - 若干 32Port TDM-Over-Pack Transport Device RoHS:否 制造商:Maxim Integrated 類型:Transport Devices 封裝 / 箱體:TECSBGA-256 數(shù)據(jù)速率:100 Mbps 電源電壓-最大:1.89 V, 3.465 V 電源電壓-最小:1.71 V, 3.135 V 電源電流:50 mA, 225 mA 最大工作溫度:+ 85 C 最小工作溫度:- 40 C 封裝:Tube
DS34T101 制造商:MAXIM 制造商全稱:Maxim Integrated Products 功能描述:Single/Dual/Quad/Octal TDM-over-Packet Chip
DS34T101_08 制造商:MAXIM 制造商全稱:Maxim Integrated Products 功能描述:Single/Dual/Quad/Octal TDM-over-Packet Chip
DS34T101_09 制造商:MAXIM 制造商全稱:Maxim Integrated Products 功能描述:Single/Dual/Quad/Octal TDM-over-Packet Chip