參數(shù)資料
型號: Z85230
廠商: ZiLOG, Inc.
英文描述: The Zilog SCC Serial Communication Controller
中文描述: Zilog公司鱗癌的串行通信控制器
文件頁數(shù): 268/317頁
文件大?。?/td> 3201K
代理商: Z85230
第1頁第2頁第3頁第4頁第5頁第6頁第7頁第8頁第9頁第10頁第11頁第12頁第13頁第14頁第15頁第16頁第17頁第18頁第19頁第20頁第21頁第22頁第23頁第24頁第25頁第26頁第27頁第28頁第29頁第30頁第31頁第32頁第33頁第34頁第35頁第36頁第37頁第38頁第39頁第40頁第41頁第42頁第43頁第44頁第45頁第46頁第47頁第48頁第49頁第50頁第51頁第52頁第53頁第54頁第55頁第56頁第57頁第58頁第59頁第60頁第61頁第62頁第63頁第64頁第65頁第66頁第67頁第68頁第69頁第70頁第71頁第72頁第73頁第74頁第75頁第76頁第77頁第78頁第79頁第80頁第81頁第82頁第83頁第84頁第85頁第86頁第87頁第88頁第89頁第90頁第91頁第92頁第93頁第94頁第95頁第96頁第97頁第98頁第99頁第100頁第101頁第102頁第103頁第104頁第105頁第106頁第107頁第108頁第109頁第110頁第111頁第112頁第113頁第114頁第115頁第116頁第117頁第118頁第119頁第120頁第121頁第122頁第123頁第124頁第125頁第126頁第127頁第128頁第129頁第130頁第131頁第132頁第133頁第134頁第135頁第136頁第137頁第138頁第139頁第140頁第141頁第142頁第143頁第144頁第145頁第146頁第147頁第148頁第149頁第150頁第151頁第152頁第153頁第154頁第155頁第156頁第157頁第158頁第159頁第160頁第161頁第162頁第163頁第164頁第165頁第166頁第167頁第168頁第169頁第170頁第171頁第172頁第173頁第174頁第175頁第176頁第177頁第178頁第179頁第180頁第181頁第182頁第183頁第184頁第185頁第186頁第187頁第188頁第189頁第190頁第191頁第192頁第193頁第194頁第195頁第196頁第197頁第198頁第199頁第200頁第201頁第202頁第203頁第204頁第205頁第206頁第207頁第208頁第209頁第210頁第211頁第212頁第213頁第214頁第215頁第216頁第217頁第218頁第219頁第220頁第221頁第222頁第223頁第224頁第225頁第226頁第227頁第228頁第229頁第230頁第231頁第232頁第233頁第234頁第235頁第236頁第237頁第238頁第239頁第240頁第241頁第242頁第243頁第244頁第245頁第246頁第247頁第248頁第249頁第250頁第251頁第252頁第253頁第254頁第255頁第256頁第257頁第258頁第259頁第260頁第261頁第262頁第263頁第264頁第265頁第266頁第267頁當前第268頁第269頁第270頁第271頁第272頁第273頁第274頁第275頁第276頁第277頁第278頁第279頁第280頁第281頁第282頁第283頁第284頁第285頁第286頁第287頁第288頁第289頁第290頁第291頁第292頁第293頁第294頁第295頁第296頁第297頁第298頁第299頁第300頁第301頁第302頁第303頁第304頁第305頁第306頁第307頁第308頁第309頁第310頁第311頁第312頁第313頁第314頁第315頁第316頁第317頁
Application Note
Technical Considerations When Implementing LocalTalk Link Access Protocol
6-133
1
Dynamic Node ID
LLAP requires the use of an 8-bit node identifier number
(node ID) for each node on the link. Apple had decided that
all LLAP nodes must have a dynamically assigned node
ID. A node would assign itself its unique address upon
activation. It is then up to that particular node to ascertain
that the address it had chosen is unique. A node randomly
chooses an 8-bit address (for example, the refresh register
value on the Z80181 is added to a randomly chosen value
on the receive buffer to obtain a pseudo random 8-bit
address).
The node then sends out an LLAP Enquiry control packet
to all the other nodes and waits for the prescribed
interframe gap of 200
μ
sec. If another node is already
using this node ID, then that node must respond within 200
μ
sec with a LLAP Acknowledgment control packet. The
new node must then rebroadcast a new guess for its node
ID. If a LLAP Acknowledgment packet is not received
within 200
μ
sec then the new node assumes that the
address is indeed unique. The new node must rebroadcast
the LLAP enquiry packet several more times to account for
cases when the packet could have been lost or when the
guessed node ID is busy and could have missed the
Enquiry packet.
LLAP Packet
LLAP packets are made up of three header bytes
(destination ID, source ID and LLAP type) and 0 to 600
bytes of variable length data. The LLAP type indicates the
type of packet that is being sent. 80H to FFH are reserved
as LLAP control packets. The four LLAP control packets
that are currently being used are: The lapENQ, which is
used as enquiry packet for dynamic node assignments;
the lapACK, which is the acknowledgment to the lapENQ;
the lapRTS, which is the request to send packet that
notifies the destination of a pending transmission; and the
lapCTS, which is the clear-to-send packet in response to
the RTS packet. Control packets do not contain data fields.
LLAP Packet Transmission
LLAP distinguishes between two types of transmissions: a
directed packet is sent from the source node to a specific
destination node through a directed transmission dialog; a
broadcast packet is sent from the source node to all nodes
on the link (destination ID is FFH) through a broadcast
transmission dialog. All dialogs must be separated by a
minimum Inter Dialog Gap (IDG) of 400
within these dialogs must be separated from each other
with a maximum Inter Frame Gap (IFG) of 200
μ
sec. Frames
μ
sec.
The source node uses the physical layer to detect the
presence or the absence of data packets on the link. The
node will wait until the line is no longer busy before
attempting to send its packets. If the node senses that the
line is indeed busy, then this node must defer. When the
node senses that the line is idle, then the node waits the
minimum IDG plus some randomly generated time before
sending the packet (the line must remain idle throughout
this period before attempting to send the packet). The
initial packets to be sent are handshaking packets. The
first packet sent by the source node to its destination node
is the RTS packet. The receiver of this RTS packet must
return a CTS packet within the allowable maximum IFG.
The source node then starts transmitting the rest of its data
packet upon receiving this CTS.
Collisions are more likely to occur during the handshaking
phase of the dialog. The randomly generated time that is
added to the IDG tends to help spread out the use of the
link among all the transmitters. A successful RTS to CTS
handshake signifies that a collision did not take place. An
RTS packet that collides with another frame has corrupt
data that shows up as a CRC error on the receiving or the
destination node. Upon receiving this, the destination node
infers that a collision must have taken place and abstains
from sending its CTS packet. The source or the
transmitting node sees that the CTS packet was not
received during the IFG and also infers that a collision did
take place. The sending node then backs off and retries.
The LLAP keeps two history bytes that log the number of
deferrals and collisions during a dialog. These history
bytes help determine the randomly generated time that is
added to the IDG. The randomly generated time is
readjusted according to the traffic conditions that are
present on the link. If collisions or deferrals have just
occurred on the most recently sent packets, then it can be
assumed that the link has heavier than usual traffic. Here,
the randomly generated number should be a larger
number in order to help spread out the transmission
attempts. Similarly, if the traffic is not so great, then the
randomly generated number should be smaller, thus
reducing the dispersion of the transmission attempts.
LocalTalk Physical Layer
LocalTalk uses the SDLC format and the FM0 bit encoding
technique.
The
RS-422
transmission and reception was chosen over the RS-232
because a higher data rate over a longer physical distance
is required. LocalTalk requires signals at 230.4 Kbits per
second over a distance of 300 meters.
signalling
standard
for
UM010901-0601
相關(guān)PDF資料
PDF描述
Z85233 The Zilog SCC Serial Communication Controller
Z8602 CAP 0.033UF 100V 10% X7R AXIAL TR-14
Z860201PSC 8-BIT MICROCONTROLLER
Z860202PSC Leaded Cartridge Fuse; Current Rating:600mA; Voltage Rating:250V; Fuse Terminals:Axial Lead; Fuse Type:Time Delay; Voltage Rating:250V; Body Material:Glass; Diameter:4.7mm; Fuse Size/Group:5 x 15 mm; Leaded Process Compatible:Yes RoHS Compliant: Yes
Z860203PSC 8-BIT MICROCONTROLLER
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
Z8523008PEC 功能描述:網(wǎng)絡控制器與處理器 IC 8MHz ESCC XTEMP RoHS:否 制造商:Micrel 產(chǎn)品:Controller Area Network (CAN) 收發(fā)器數(shù)量: 數(shù)據(jù)速率: 電源電流(最大值):595 mA 最大工作溫度:+ 85 C 安裝風格:SMD/SMT 封裝 / 箱體:PBGA-400 封裝:Tray
Z85230-08PEC 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Communications Controller
Z8523008PEG 功能描述:網(wǎng)絡控制器與處理器 IC 8MHz ESCC XTEMP RoHS:否 制造商:Micrel 產(chǎn)品:Controller Area Network (CAN) 收發(fā)器數(shù)量: 數(shù)據(jù)速率: 電源電流(最大值):595 mA 最大工作溫度:+ 85 C 安裝風格:SMD/SMT 封裝 / 箱體:PBGA-400 封裝:Tray
Z8523008PSC 功能描述:網(wǎng)絡控制器與處理器 IC 8MHz ESCC RoHS:否 制造商:Micrel 產(chǎn)品:Controller Area Network (CAN) 收發(fā)器數(shù)量: 數(shù)據(jù)速率: 電源電流(最大值):595 mA 最大工作溫度:+ 85 C 安裝風格:SMD/SMT 封裝 / 箱體:PBGA-400 封裝:Tray
Z85230-08PSC 制造商:Zilog Inc 功能描述:IC CMOS SCC 8MHZ 85230 DIP40