參數(shù)資料
型號(hào): LH7A400N0G000B5
廠商: NXP Semiconductors N.V.
元件分類: 數(shù)學(xué)處理器
英文描述: 32-Bit System-on-Chip
封裝: LH7A400N0F000B5<SOT1020-1 (LFBGA256)|<<http://www.nxp.com/packages/SOT1020-1.html<1<Always Pb-free,;LH7A400N0F076B5<SOT1020-1 (LFBGA256)|<<http://www.nxp.com/packages/SOT
文件頁數(shù): 22/65頁
文件大小: 834K
代理商: LH7A400N0G000B5
LH7A400
32-Bit System-on-Chip
22
Rev. 01
16 July 2007
Preliminary data sheet
NXP Semiconductors
AMBA APB BUS
The AMBA APB bus is a lower-speed 32-bit-wide
peripheral data bus. The speed of this bus is selectable
to be a divide-by-2, divide-by-4 or divide-by-8 of the
speed of the AHB bus.
EXTERNAL BUS INTERFACE
The External Bus Interface (EBI) provides a 32-bit
wide, high speed gateway to external memory devices.
The memory devices supported include:
Asynchronous RAM/ROM/Flash
Synchronous DRAM/Flash
PCMCIA interfaces
CompactFlash interfaces.
The EBI can be controlled by either the Asynchro-
nous memory controller or Synchronous memory con-
troller. There is an arbiter on the EBI input, with priority
given to the Synchronous Memory Controller interface.
LCD AHB BUS
The LCD controller has its own local memory bus
that connects it to the system’s embedded memory and
external SDRAM. The function of this local data bus is
to allow the LCD controller to perform its video refresh
function without congesting the AHB bus. This leads to
better system performance and lower power consump-
tion. There is an arbiter on both the embedded memory
and the synchronous memory controller. In both cases
the LCD bus is given priority.
DMA BUSES
The LH7A400 has a DMA system that connects the
higher speed/higher data volume APB peripherals
(MMC, USB and AC97) to the AHB bus. This enables
the efficient transfer of data between these peripherals
and external memory without the intervention of the
ARM922T core. The DMA engine does not support
memory to memory transfers.
Memory Map
The LH7A400 system has a 32-bit-wide address bus.
This allows it to address up to 4GB of memory. This
memory space is subdivided into a number of memory
banks; see Figure 6. Four of these banks (each of
256MB) are allocated to the Synchronous memory con-
troller. Eight of the banks (again, each 256MB) are allo-
cated to the Asynchronous memory controller. Two of
these eight banks are designed for PCMCIA systems.
Part of the remaining memory space is allocated to the
embedded SRAM, and to the control registers of the
AHB and APB. The rest is unused.
The LH7A400 can boot from either synchronous or
asynchronous ROM/Flash. The selection is determined
by the value of the MEDCHG pin at Power On Reset as
shown in Table 8. When booting from synchronous
memory, then synchronous bank 4 (nSCS3) is mapped
into memory location zero. When booting from asyn-
chronous memory, asynchronous memory bank 0
(nSCS0) is mapped into memory location zero.
Figure 6 shows the memory map of the LH7A400
system for the two boot modes.
Once the LH7A400 has booted, the boot code can
configure the ARM922T MMU to remap the low mem-
ory space to a location in RAM. This allows the user to
set the interrupt vector table.
Interrupt Controller
The LH7A400 interrupt controller is designed to con-
trol the interrupts from 28 different sources. Four inter-
rupt sources are mapped to the FIQ input of the
ARM922T and 24 are mapped to the IRQ input. FIQs
have a higher priority than the IRQs. If two interrupts
with the same priority become active at the same time,
the priority must be resolved in software.
When an interrupt becomes active, the interrupt con-
troller generates an FIQ or IRQ if the corresponding
mask bit is set. No latching of interrupts takes place in
the controller. After a Power On Reset all mask register
bits are cleared, therefore masking all interrupts.
Hence, enabling of the mask register must be done by
software after a power-on-reset.
Table 8. Boot Modes
BOOT MODE
LATCHED
BOOT-
WIDTH1
LATCHED
BOOT-
WIDTH0
LATCHED
MEDCHG
8-bit ROM
0
0
0
16-bit ROM
0
1
0
32-bit ROM
1
0
0
32-bit ROM
1
1
0
16-bit SFlash
(Initializes Mode Register)
0
0
1
16-bit SROM
(Initializes Mode Register)
0
1
1
32-bit SFlash
(Initializes Mode Register)
1
0
1
32-bit SROM
(Initializes Mode Register)
1
1
1
相關(guān)PDF資料
PDF描述
LH7A404N0F000B3 32-Bit System-on-Chip
LH7A404N0F092B3 32-Bit System-on-Chip
LLNRK LLNRK/LLSRK Series POWR-PRO Class RK1
LLZ4V7 500mW Hermetically Sealed Glass Zener Voltage Regulators
LLZ43V 500mW Hermetically Sealed Glass Zener Voltage Regulators
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
LH7A400N0G000B5,55 功能描述:ARM微控制器 - MCU LCD,USB FS/HOST,MMU,ADC,BGA324 RoHS:否 制造商:STMicroelectronics 核心:ARM Cortex M4F 處理器系列:STM32F373xx 數(shù)據(jù)總線寬度:32 bit 最大時(shí)鐘頻率:72 MHz 程序存儲(chǔ)器大小:256 KB 數(shù)據(jù) RAM 大小:32 KB 片上 ADC:Yes 工作電源電壓:1.65 V to 3.6 V, 2 V to 3.6 V, 2.2 V to 3.6 V 工作溫度范圍:- 40 C to + 85 C 封裝 / 箱體:LQFP-48 安裝風(fēng)格:SMD/SMT
LH7A400N0G000B5,551 制造商:NXP Semiconductors 功能描述:
LH7A400N0G000B5;55 功能描述:ARM微控制器 - MCU LCD USB FS/HOST MMU RoHS:否 制造商:STMicroelectronics 核心:ARM Cortex M4F 處理器系列:STM32F373xx 數(shù)據(jù)總線寬度:32 bit 最大時(shí)鐘頻率:72 MHz 程序存儲(chǔ)器大小:256 KB 數(shù)據(jù) RAM 大小:32 KB 片上 ADC:Yes 工作電源電壓:1.65 V to 3.6 V, 2 V to 3.6 V, 2.2 V to 3.6 V 工作溫度范圍:- 40 C to + 85 C 封裝 / 箱體:LQFP-48 安裝風(fēng)格:SMD/SMT
LH7A400N0G000B5-S 功能描述:ARM微控制器 - MCU ARM9 LCD USB HOST RoHS:否 制造商:STMicroelectronics 核心:ARM Cortex M4F 處理器系列:STM32F373xx 數(shù)據(jù)總線寬度:32 bit 最大時(shí)鐘頻率:72 MHz 程序存儲(chǔ)器大小:256 KB 數(shù)據(jù) RAM 大小:32 KB 片上 ADC:Yes 工作電源電壓:1.65 V to 3.6 V, 2 V to 3.6 V, 2.2 V to 3.6 V 工作溫度范圍:- 40 C to + 85 C 封裝 / 箱體:LQFP-48 安裝風(fēng)格:SMD/SMT
LH7A400N0W000 制造商:SHARP 制造商全稱:Sharp Electrionic Components 功能描述:32-Bit System-on-Chip