![](http://datasheet.mmic.net.cn/Analog-Devices-Inc/ADAU1401AWBSTZ-RL_datasheet_104398/ADAU1401AWBSTZ-RL_16.png)
ADAU1401A
Rev. A | Page 16 of 52
THEORY OF OPERATION
The core of the ADAU1401A is a 28-bit DSP (56-bit with double-
precision processing) optimized for audio processing. The
program and parameter RAMs can be loaded with a custom
audio processing signal flow built using the SigmaStudio graphical
programming software from Analog Devices, Inc. The values
stored in the parameter RAM control individual signal processing
blocks, such as equalization filters, dynamics processors, audio
delays, and mixer levels. A safeload feature allows transparent
parameter updates and prevents clicks in the output signals.
The program RAM, parameter RAM, and register contents can
be saved in an external EEPROM, from which the ADAU1401A
can self-boot on startup. In this standalone mode, parameters
can be controlled through the on-board multipurpose pins. The
ADAU1401A can accept controls from switches, potentiometers,
rotary encoders, and IR receivers. Parameters such as volume
and tone settings can be saved to the EEPROM on power-down
and recalled again on power-up.
The ADAU1401A can operate with digital or analog inputs and
outputs, or a mix of both. The stereo ADC and four DACs each
have an SNR of at least +100 dB and a THD + N of at least
83 dB. The 8-channel, flexible serial data input/output ports
allow glueless interconnection to a variety of ADCs, DACs,
general-purpose DSPs, S/PDIF receivers and transmitters, and
sample rate converters. The serial ports of the ADAU1401A can
be configured in I2S, left-justified, right-justified, or TDM serial
port compatible modes.
Twelve multipurpose pins (MP0 to MP11) allow the ADAU1401A
to receive external control signals as input and to output flags or
controls to other devices in the system. The MPx pins can be
configured as digital I/Os, inputs to the 4-channel auxiliary
ADC, or serial data I/O ports. As inputs, these pins can be
connected to buttons, switches, rotary encoders, potentiometers,
IR receivers, or other external circuitry to control the internal
signal processing program. When configured as outputs, these
pins can be used to drive LEDs, control other ICs, or connect to
other external circuitry in an application.
The ADAU1401A has a sophisticated control port that supports
complete read/write capability of all memory locations. Control
registers are provided to offer complete control of the configu-
ration and serial modes of the chip. The ADAU1401A can be
configured for either SPI or I2C control, or it can self-boot from
an external EEPROM.
An on-board oscillator can be connected to an external crystal
to generate the master clock. In addition, a master clock phase-
locked loop (PLL) allows the ADAU1401A to be clocked from
various clock speeds. The PLL can accept inputs of 64 × fS, 256 × fS,
384 × fS, or 512 × fS to generate the internal master clock of the core.
The SigmaStudio software is used to program and control the
SigmaDSP through the control port. Along with designing and
tuning a signal flow, SigmaStudio tools can be used to configure
all of the DSP registers and burn a new program into the external
EEPROM. The SigmaStudio graphical interface allows anyone
with digital or analog audio processing knowledge to easily design
a DSP signal flow and port it to a target application. In addition,
the interface provides enough flexibility and programmability
for an experienced DSP programmer to have in-depth control
of the design. In SigmaStudio, the user can connect graphical
blocks (such as biquad filters, dynamics processors, mixers, and
delays), compile the design, and load the program and parameter
files into the ADAU1401A memory through the control port.
Signal processing blocks available in the provided libraries include
Single- and double-precision biquad filters
Processors with peak or rms detection for monochannel
and multichannel dynamics
Mixers and splitters
Tone and noise generators
Fixed and variable gain
Loudness
Delay
Stereo enhancement
Dynamic bass boost
Noise and tone sources
FIR filters
Level detectors
GPIO control and conditioning
Additional processing blocks are always being developed.
Analog Devices also provides proprietary and third-party
algorithms for applications such as matrix decoding, bass
enhancement, and surround virtualizers. Contact Analog
Devices for information about licensing these algorithms.
The ADAU1401A operates from a 1.8 V digital power supply
and a 3.3 V analog supply. An on-board voltage regulator can
be used to operate the chip from a single 3.3 V supply. The
ADAU1401A is fabricated on a single monolithic, integrated
circuit and is packaged in a 48-lead LQFP for operation over the
40°C to +105°C temperature range.