![](http://datasheet.mmic.net.cn/Maxim-Integrated-Products/DS3172N-_datasheet_97076/DS3172N-_85.png)
DS3171/DS3172/DS3173/DS3174
85
A FEBE error is generated by forcing the C41, C42, and C43 bits in a single multiframe to zero. FEBE error(s) can be
inserted one error at a time, or continuously. The FEBE error insertion rate (single or continuous) is programmable.
Each error type (framing, P-bit parity, C-bit parity, or FEBE) has a separate enable. Continuous error insertion
mode inserts errors at every opportunity. Single error insertion mode inserts an error at the next opportunity when
requested. the framing multi-error modes (SEF or OOMF) insert the indicated number of error(s) at the next
opportunities when requested; i.e., a single request will cause multiple errors to be inserted. The requests can be
initiated by a register bit(TSEI) or by the manual error insertion input (TMEI). The error insertion initiation type
(register or input) is programmable. The insertion of each particular error type is individually enabled. Once all error
insertion has been performed, the data stream is passed on to overhead insertion.
10.6.5.4 Transmit C-Bit DS3 Overhead Insertion
Overhead insertion can insert any (or all) of the DS3 overhead bits into the DS3 frame. The DS3 overhead bits X1,
X2, P1, P2, MX, FXY, and CXY can be sourced from the transmit overhead interface (TOHCLK, TOH, TOHEN, and
TOHSOF). The P-bits (P1 and P2) and C31, C32, and C33 bits are received as an error mask (modulo 2 addition of
the input bit and the internally generated bit). The DS3 overhead insertion is fully controlled by the transmit
overhead interface. If the transmit overhead data enable signal (TOHEN) is driven high, then the bit on the transmit
overhead signal (TOH) is inserted into the output data stream. Insertion of bits using the TOH signal overwrites
internal overhead insertion.
10.6.5.5 Transmit C-Bit DS3 AIS/Idle Generation
C-bit DS3 AIS/Idle generation overwrites the data stream with AIS or an Idle signal. If transmit Idle is enabled, the
data stream payload is forced to a 1100 pattern with two ones immediately following each DS3 overhead bit. M1,
M2, and M3 bits are overwritten with the values zero, one, and zero (010) respectively. FX1, FX2, FX3, and FX4 bits are
overwritten with the values one, zero, zero, and one (1001) respectively. X1 and X2 are overwritten with 11. And,
P1, P2, C31, C32, and C33 are overwritten with the calculated payload parity from the previous output DS3 frame.
If transmit AIS is enabled, the data stream payload is forced to a 1010 pattern with a one immediately following
each DS3 overhead bit. M1, M2, and M3 bits are overwritten with the values zero, one, and zero (010) respectively.
FX1, FX2, FX3, and FX4 bits are overwritten with the values one, zero, zero, and one (1001) respectively. X1 and X2
are overwritten with 11. P1, P2, C31, C32, and C33 are overwritten with the calculated payload parity from the previous
output DS3 frame. And, CX1, CX2, and CX3 (X ≠ 3) are overwritten with 000. AIS will overwrite a transmit Idle signal.
10.6.5.5.1 Receive C-Bit DS3 Frame Format
The DS3 frame format is shown in Figure 10-14. X1 and X2 are the Remote Defect Indication (RDI) bits (also referred to as the far-end SEF/AIS bits). P1 and P2 are the parity bits used for line error monitoring. M1, M2, and M3
are the multiframe alignment bits that define the multiframe boundary. FXY are the subframe alignment bits that
define the subframe boundary. Note: Both the M-bits and F-bits define the DS3 frame boundary. C11 is the
Application Identification Channel (AIC). C12 is reserved for future network use, and has a value of one. C13 is the
Far-End Alarm and Control (FEAC) signal. C21, C22, and C23 are unused, and have a value of one. C31, C32, and C33
are the C-bit parity bits used for path error monitoring. C41, C42, and C43 are the Far-End Block Error (FEBE) bits
used for remote path error monitoring. C51, C52, and C53 are the path maintenance data link (or HDLC) bits. C61,
C62, and C63 are unused, and have a value of one. C71, C72, and C73 are unused, and have a value of one.
10.6.5.5.2 Receive C-Bit DS3 Overhead Extraction
Overhead extraction extracts all of the DS3 overhead bits from the C-bit DS3 frame. All of the DS3 overhead bits
X1, X2, P1, P2, MX, FXY, and CXY are output on the receive overhead interface (ROH, ROHSOF, and ROHCLK). The
P1, P2, C31, C32, and C33 bits are output as an error indication (modulo 2 addition of the calculated parity and the
bit). The C13 bit is sent over to the receive FEAC controller. The C51, C52, and C53 bits are sent to the receive HDLC
overhead controller.