參數(shù)資料
型號(hào): MT9074
廠商: Mitel Networks Corporation
英文描述: T1/E1/J1 Single Chip Transceiver(T1/E1/J1單片收發(fā)器)
中文描述: T1/E1/J1收發(fā)單芯片收發(fā)器(T1/E1/J1收發(fā)單片收發(fā)器)
文件頁(yè)數(shù): 26/120頁(yè)
文件大?。?/td> 362K
代理商: MT9074
第1頁(yè)第2頁(yè)第3頁(yè)第4頁(yè)第5頁(yè)第6頁(yè)第7頁(yè)第8頁(yè)第9頁(yè)第10頁(yè)第11頁(yè)第12頁(yè)第13頁(yè)第14頁(yè)第15頁(yè)第16頁(yè)第17頁(yè)第18頁(yè)第19頁(yè)第20頁(yè)第21頁(yè)第22頁(yè)第23頁(yè)第24頁(yè)第25頁(yè)當(dāng)前第26頁(yè)第27頁(yè)第28頁(yè)第29頁(yè)第30頁(yè)第31頁(yè)第32頁(yè)第33頁(yè)第34頁(yè)第35頁(yè)第36頁(yè)第37頁(yè)第38頁(yè)第39頁(yè)第40頁(yè)第41頁(yè)第42頁(yè)第43頁(yè)第44頁(yè)第45頁(yè)第46頁(yè)第47頁(yè)第48頁(yè)第49頁(yè)第50頁(yè)第51頁(yè)第52頁(yè)第53頁(yè)第54頁(yè)第55頁(yè)第56頁(yè)第57頁(yè)第58頁(yè)第59頁(yè)第60頁(yè)第61頁(yè)第62頁(yè)第63頁(yè)第64頁(yè)第65頁(yè)第66頁(yè)第67頁(yè)第68頁(yè)第69頁(yè)第70頁(yè)第71頁(yè)第72頁(yè)第73頁(yè)第74頁(yè)第75頁(yè)第76頁(yè)第77頁(yè)第78頁(yè)第79頁(yè)第80頁(yè)第81頁(yè)第82頁(yè)第83頁(yè)第84頁(yè)第85頁(yè)第86頁(yè)第87頁(yè)第88頁(yè)第89頁(yè)第90頁(yè)第91頁(yè)第92頁(yè)第93頁(yè)第94頁(yè)第95頁(yè)第96頁(yè)第97頁(yè)第98頁(yè)第99頁(yè)第100頁(yè)第101頁(yè)第102頁(yè)第103頁(yè)第104頁(yè)第105頁(yè)第106頁(yè)第107頁(yè)第108頁(yè)第109頁(yè)第110頁(yè)第111頁(yè)第112頁(yè)第113頁(yè)第114頁(yè)第115頁(yè)第116頁(yè)第117頁(yè)第118頁(yè)第119頁(yè)第120頁(yè)
MT9074
Advance Information
26
flag followed by the data and closing flag is sent and
zero insertion still included, but no CRC. That is, the
FCS is injected by the microprocessor as part of the
data field. This is used in V.120 terminal adaptation
for synchronous protocol sensitive UI frames.
HDLC Receiver
After initialization and enabling, the receiver clocks in
serial data, continuously checking for Go-aheads (0
1111 1110), flags (0111 1110), and Idle Channel
states (at least fifteen ones). When a flag is
detected, the receiver synchronizes itself to the
serial stream of data bits, automatically calculating
the
FCS
. If the data length between flags after zero
removal is less than 25 bits, then the packet is
ignored so no bytes are loaded into Rx
FIFO.
When
the data length after zero removal is between 25 and
31 bits, a first byte and bad
FCS
code are loaded into
the Rx
FIFO
(see definition of RQ8 and RQ9 below).
For an error-free packet, the result in the
CRC
register should match the
HEX
pattern of ’F0B8’
when a closing flag is detected.
If address recognition is required, the Receiver
Address Recognition Registers are loaded with the
desired address and the Adrec bit in the Control
Register 1 is set high. Bit 0 of the Address Registers
is used as an enable bit for that byte, thus allowing
either or both of the first two bytes to be compared to
the expected values. Bit 0 of the first byte of the
address received (address extension bit) will be
monitored to determine if a single or dual byte
address is being received. If this bit is 0 then a two
byte address is being received and then only the first
six bits of the first address byte are compared. An all
call condition is also monitored for the second
address byte; and if received the first address byte is
ignored (not compared with mask byte). If the
address extension bit is a 1 then a single byte
address is being received. In this case, an all call
condition is monitored for in the first byte as well as
the mask byte written to the comparison register and
the second byte is ignored. Seven bits of address
comparison can be realized on the first byte if this is
a single byte address by setting the Seven bit of
Control Register 2.
The following two Status Register bits (RQ8 and
RQ9) are appended to each data byte as it is written
to the Rx FIFO. They indicate that a good packet has
been received (good FCS and no frame abort), or a
bad packet with either incorrect FCS or frame abort.
The Status and Interrupt Registers should be read
before reading the Rx FIFO since status and
interrupt information correspond to the byte at the
output of the FIFO (i.e. the byte about to be read).
The Status Register bits are encoded as follows:
RQ9
1
0
1
0
RQ8
1
1
0
0
Byte status
last byte (bad packet)
first byte
last byte (good packet)
packet byte
The end-of-packet-detect (EOPD) interrupt indicates
that the last byte written to the Rx FIFO was an EOP
byte (last byte in a packet). The end-of-packet-read
(EopR) interrupt indicates that the byte about to be
read from the Rx FIFO is an EOP byte (last byte in a
packet). The Status Register should be read to see if
the packet is good or bad before the byte is read.
A minimum size packet has an 8-bit address, an 8-bit
control byte, and a 16-bit FCS pattern between the
opening and closing flags (see Section 9.3.2). Thus,
the absence of a data transmission error and a frame
length of at least 32 bits results in the receiver
writing a valid packet code with the EOP byte into Rx
FIFO. The last 16 bits before the closing flag are
regarded as the FCS pattern and will not be
transferred to the receiver FIFO. Only data bytes
(Address, Control, Information) are loaded into the
Rx FIFO.
In the case of an Rx FIFO overflow, no clocking
occurs until a new opening flag is received. In other
words, the remainder of the packet is not clocked into
the FIFO. Also, the top byte of the FIFO will not be
written over. If the FIFO is read before the reception
of the next packet then reception of that packet will
occur. If two beginning of packet conditions
(RQ9=0;RQ8=1) are seen in the FIFO, without an
intermediate EOP status, then overflow occurred for
the first packet.
The receiver may be enabled independently of the
transmitter. This is done by setting the RXEN bit of
Control Register 1. Enabling happens immediately
upon writing to the register. Disabling using RXEN
will occur after the present packet has been
completely loaded into the FIFO. Disabling can occur
during a packet if no bytes have been written to the
FIFO yet. Disabling will consist of disabling the
internal receive clock. The FIFO, Status, and
Interrupt Registers may still be read while the
receiver is disabled. Note that the receiver requires a
flag before processing a frame, thus if the receiver is
enabled in the middle of an incoming packet it will
ignore that packet and wait for the next complete
one.
The receive CRC can be monitored in the Rx CRC
Registers. These registers contain the actual CRC
sent by the other transmitter in its original form; that
is, MSB first and bits inverted. These registers are
相關(guān)PDF資料
PDF描述
MT9075B E1 Single Chip Transceiver
MT9075B E1 Single Chip Transceiver(E1單片收發(fā)器)
MT9075 E1 Single Chip Transceiver
MT9075A E1 Single Chip Transceiver
MT9075AL E1 Single Chip Transceiver
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
MT9074_05 制造商:ZARLINK 制造商全稱(chēng):Zarlink Semiconductor Inc 功能描述:T1/E1/J1 Single Chip Transceiver
MT9074AL 制造商:Microsemi Corporation 功能描述:FRAMER E1/J1/T1 5V 100MQFP - Trays 制造商:Zarlink Semiconductor Inc 功能描述:FRAMER E1/J1/T1 5V 100MQFP - Trays
MT9074AL1 制造商:Microsemi Corporation 功能描述:FRAMER E1/J1/T1 5V 100MQFP - Trays
MT9074AP 制造商:Microsemi Corporation 功能描述:
MT9074AP1 制造商:Microsemi Corporation 功能描述:T1/E1/J1 SGLE CHIP XSCR 制造商:Microsemi Corporation 功能描述:FRAMER E1/J1/T1 5V 68PLCC - Rail/Tube 制造商:MICROSEMI CONSUMER MEDICAL PRODUCT GROUP 功能描述:IC TXRX SGL T1/E1 68PLCC 制造商:Microsemi Corporation 功能描述:IC TXRX SGL T1/E1 68PLCC