ProASICPLUS Flash Family FPGAs 2- 20 v5.9 User Security ProASIC" />
鍙冩暩(sh霉)璩囨枡
鍨嬭櫉锛� APA750-FGG896
寤犲晢锛� Microsemi SoC
鏂囦欢闋佹暩(sh霉)锛� 103/178闋�
鏂囦欢澶у皬锛� 0K
鎻忚堪锛� IC FPGA PROASIC+ 750K 896-FBGA
妯欐簴鍖呰锛� 27
绯诲垪锛� ProASICPLUS
RAM 浣嶇附瑷堬細 147456
杓稿叆/杓稿嚭鏁�(sh霉)锛� 562
闁€鏁�(sh霉)锛� 750000
闆绘簮闆诲锛� 2.3 V ~ 2.7 V
瀹夎椤炲瀷锛� 琛ㄩ潰璨艰
宸ヤ綔婧害锛� 0°C ~ 70°C
灏佽/澶栨锛� 896-BGA
渚涙噳鍟嗚ō鍌欏皝瑁濓細 896-FBGA锛�31x31锛�
绗�1闋�绗�2闋�绗�3闋�绗�4闋�绗�5闋�绗�6闋�绗�7闋�绗�8闋�绗�9闋�绗�10闋�绗�11闋�绗�12闋�绗�13闋�绗�14闋�绗�15闋�绗�16闋�绗�17闋�绗�18闋�绗�19闋�绗�20闋�绗�21闋�绗�22闋�绗�23闋�绗�24闋�绗�25闋�绗�26闋�绗�27闋�绗�28闋�绗�29闋�绗�30闋�绗�31闋�绗�32闋�绗�33闋�绗�34闋�绗�35闋�绗�36闋�绗�37闋�绗�38闋�绗�39闋�绗�40闋�绗�41闋�绗�42闋�绗�43闋�绗�44闋�绗�45闋�绗�46闋�绗�47闋�绗�48闋�绗�49闋�绗�50闋�绗�51闋�绗�52闋�绗�53闋�绗�54闋�绗�55闋�绗�56闋�绗�57闋�绗�58闋�绗�59闋�绗�60闋�绗�61闋�绗�62闋�绗�63闋�绗�64闋�绗�65闋�绗�66闋�绗�67闋�绗�68闋�绗�69闋�绗�70闋�绗�71闋�绗�72闋�绗�73闋�绗�74闋�绗�75闋�绗�76闋�绗�77闋�绗�78闋�绗�79闋�绗�80闋�绗�81闋�绗�82闋�绗�83闋�绗�84闋�绗�85闋�绗�86闋�绗�87闋�绗�88闋�绗�89闋�绗�90闋�绗�91闋�绗�92闋�绗�93闋�绗�94闋�绗�95闋�绗�96闋�绗�97闋�绗�98闋�绗�99闋�绗�100闋�绗�101闋�绗�102闋�鐣跺墠绗�103闋�绗�104闋�绗�105闋�绗�106闋�绗�107闋�绗�108闋�绗�109闋�绗�110闋�绗�111闋�绗�112闋�绗�113闋�绗�114闋�绗�115闋�绗�116闋�绗�117闋�绗�118闋�绗�119闋�绗�120闋�绗�121闋�绗�122闋�绗�123闋�绗�124闋�绗�125闋�绗�126闋�绗�127闋�绗�128闋�绗�129闋�绗�130闋�绗�131闋�绗�132闋�绗�133闋�绗�134闋�绗�135闋�绗�136闋�绗�137闋�绗�138闋�绗�139闋�绗�140闋�绗�141闋�绗�142闋�绗�143闋�绗�144闋�绗�145闋�绗�146闋�绗�147闋�绗�148闋�绗�149闋�绗�150闋�绗�151闋�绗�152闋�绗�153闋�绗�154闋�绗�155闋�绗�156闋�绗�157闋�绗�158闋�绗�159闋�绗�160闋�绗�161闋�绗�162闋�绗�163闋�绗�164闋�绗�165闋�绗�166闋�绗�167闋�绗�168闋�绗�169闋�绗�170闋�绗�171闋�绗�172闋�绗�173闋�绗�174闋�绗�175闋�绗�176闋�绗�177闋�绗�178闋�
ProASICPLUS Flash Family FPGAs
2- 20
v5.9
User Security
ProASICPLUS devices have FlashLock protection bits that,
once
programmed,
block
the
entire
programmed
contents from being read externally. Refer to Table 2-11
for details on the number of bits in the key for each
device. If locked, the user can only reprogram the device
employing the user-defined security key. This protects
the device from being read back and duplicated. Since
programmed data is stored in nonvolatile memory cells
(actually very small capacitors) rather than in the wiring,
physical deconstruction cannot be used to compromise
data. This type of security breach is further discouraged
by the placement of the memory cells beneath the four
metal layers (whose removal cannot be accomplished
without disturbing the charge in the capacitor). This is
the highest security provided in the industry. For more
information,
refer
to
Actel鈥檚
Embedded Memory Floorplan
The embedded memory is located across the top and
bottom of the device in 256x9 blocks (Figure 1-1 on page
1-2). Depending on the device, up to 88 blocks are
available to support a variety of memory configurations.
Each block can be programmed as an independent
memory array or combined (using dedicated memory
routing resources) to form larger, more complex memory
configurations. A single memory configuration could
include blocks from both the top and bottom memory
locations.
Embedded Memory Configurations
The embedded memory in the ProASICPLUS family
provides great configuration flexibility (Table 2-12). Each
ProASICPLUS block is designed and optimized as a two-
port memory (one read, one write). This provides 198
kbits of two-port and/or single port memory in the
APA1000 device.
Each memory block can be configured as FIFO or SRAM,
with
independent
selection
of
synchronous
or
asynchronous
read
and
write
ports
Additional characteristics include programmable flags as
well as parity checking and generation. Figure 2-18 on
diagrams of the basic SRAM and FIFO blocks. Table 2-14
memory
block
SRAM
and
FIFO
interface
signals,
respectively. A single memory block is designed to
operate at up to 150 MHz (standard speed grade typical
conditions). Each block is comprised of 256 9-bit words
(one read port, one write port). The memory blocks may
be cascaded in width and/or depth to create the desired
memory organization. (Figure 2-20 on page 2-24). This
provides optimal bit widths of 9 (one block), 18, 36, and
72, and optimal depths of 256, 512, 768, and 1,024. Refer
to Actel鈥檚 SmartGen User鈥檚 Guide for more information.
Figure 2-21 on page 2-24 gives an example of optimal
memory usage. Ten blocks with 23,040 bits have been
used to generate three arrays of various widths and
depths. Figure 2-22 on page 2-24 shows how RAM blocks
can be used in parallel to create extra read ports. In this
example, using only 10 of the 88 available blocks of the
APA1000 yields an effective 6,912 bits of multiple port
RAM. The Actel SmartGen software facilitates building
wider and deeper memory configurations for optimal
memory usage.
Table 2-11 Flashlock Key Size by Device
Device
Key Size
APA075
79 bits
APA150
79 bits
APA300
79 bits
APA450
119 bits
APA600
167 bits
APA750
191 bits
APA1000
263 bits
Table 2-12 ProASICPLUS Memory Configurations by Device
Device
Bottom
Top
Maximum Width
Maximum Depth
DWDW
APA075
0
12
256
108
1,536
9
APA150
0
16
256
144
2,048
9
APA300
16
256
144
2,048
9
APA450
24
256
216
3,072
9
APA600
28
256
252
3,584
9
APA750
32
256
288
4,096
9
APA1000
44
256
396
5,632
9
鐩搁棞(gu膩n)PDF璩囨枡
PDF鎻忚堪
HSC49DRYN-S93 CONN EDGECARD 98POS DIP .100 SLD
A3PE3000L-FGG484I IC FPGA 1KB FLASH 3M 484-FBGA
170-015-172L000 CONN DB15 CRIMP MALE TIN
HSC49DRYH-S93 CONN EDGECARD 98POS DIP .100 SLD
170-037-172L030 CONN DB37 CRIMP MALE TIN
鐩搁棞(gu膩n)浠g悊鍟�/鎶€琛�(sh霉)鍙冩暩(sh霉)
鍙冩暩(sh霉)鎻忚堪
APA750-FGG896A 鍔熻兘鎻忚堪:IC FPGA PROASIC+ 750K 896-FBGA RoHS:鏄� 椤炲垾:闆嗘垚闆昏矾 (IC) >> 宓屽叆寮� - FPGA锛堢従(xi脿n)鍫村彲绶ㄧ▼闁€闄e垪锛� 绯诲垪:ProASICPLUS 妯欐簴鍖呰:1 绯诲垪:ProASICPLUS LAB/CLB鏁�(sh霉):- 閭忚集鍏冧欢/鍠厓鏁�(sh霉):- RAM 浣嶇附瑷�:129024 杓稿叆/杓稿嚭鏁�(sh霉):248 闁€鏁�(sh霉):600000 闆绘簮闆诲:2.3 V ~ 2.7 V 瀹夎椤炲瀷:琛ㄩ潰璨艰 宸ヤ綔婧害:- 灏佽/澶栨:352-BFCQFP锛屽付鎷夋】 渚涙噳鍟嗚ō鍌欏皝瑁�:352-CQFP锛�75x75锛�
APA750-FGG896I 鍔熻兘鎻忚堪:IC FPGA PROASIC+ 750K 896-FBGA RoHS:鏄� 椤炲垾:闆嗘垚闆昏矾 (IC) >> 宓屽叆寮� - FPGA锛堢従(xi脿n)鍫村彲绶ㄧ▼闁€闄e垪锛� 绯诲垪:ProASICPLUS 妯欐簴鍖呰:1 绯诲垪:ProASICPLUS LAB/CLB鏁�(sh霉):- 閭忚集鍏冧欢/鍠厓鏁�(sh霉):- RAM 浣嶇附瑷�:129024 杓稿叆/杓稿嚭鏁�(sh霉):248 闁€鏁�(sh霉):600000 闆绘簮闆诲:2.3 V ~ 2.7 V 瀹夎椤炲瀷:琛ㄩ潰璨艰 宸ヤ綔婧害:- 灏佽/澶栨:352-BFCQFP锛屽付鎷夋】 渚涙噳鍟嗚ō鍌欏皝瑁�:352-CQFP锛�75x75锛�
APA750-FGGB 鍒堕€犲晢:ACTEL 鍒堕€犲晢鍏ㄧū:Actel Corporation 鍔熻兘鎻忚堪:ProASIC Flash Family FPGAs
APA750-FGGES 鍒堕€犲晢:ACTEL 鍒堕€犲晢鍏ㄧū:Actel Corporation 鍔熻兘鎻忚堪:ProASIC Flash Family FPGAs
APA750-FGGI 鍒堕€犲晢:ACTEL 鍒堕€犲晢鍏ㄧū:Actel Corporation 鍔熻兘鎻忚堪:ProASIC Flash Family FPGAs