參數(shù)資料
型號: TSL210
廠商: AMS-TAOS USA Inc
文件頁數(shù): 9/13頁
文件大?。?/td> 603K
描述: IC LINEAR SENSOR ARRAY 640X1
標(biāo)準(zhǔn)包裝: 20
系列: *
TSL210
640 ?1 LINEAR SENSOR ARRAY
TAOS039D  AUGUST 2011
8
r
r
Copyright E 2011, TAOS Inc.
The LUMENOLOGY r Company
www.taosinc.com
APPLICATION INFORMATION
Integration Time
The integration time of the linear array is the period during which light is sampled and charge accumulates on
each pixels integrating capacitor. The flexibility to adjust the integration period is a powerful and useful feature
of the TAOS TSL2xx linear array family. By changing the integration time, a desired output voltage can be
obtained on the output pin while avoiding saturation for a wide range of light levels.
Each pixel of the linear array consists of a light-sensitive photodiode. The photodiode converts light intensity
to a voltage. The voltage is sampled on the Sampling Capacitor by closing switch S2 (position 1) (see the
functional block diagram on page 1). Logic controls the resetting of the Integrating Capacitor to zero by closing
switch S1 (position 2).
At SI input (Start Integration), pixel 1 is accessed. During this event, S2 moves from position 1 (sampling) to
position 3 (holding). This holds the sampled voltage for pixel 1. Switch S1 for pixel 1 is then moved to position
2. This resets (clears) the voltage previously integrated for that pixel so that pixel 1 is now ready to start a new
integration cycle. When the next clock period starts, the S1 switch is returned to position 1 to be ready to
start integrating again. S2 is returned to position 1 to start sampling the next light integration. Then the next pixel
starts the same procedure. The integration time is the time from a specific pixel read to the next time that pixel
is read again. If either the clock speed or the time between successive SI pulses is changed, the integration time
will vary. After the final (n
th
) pixel in the array is read on the output, the output goes into a high-impedance mode.
A new SI pulse can occur on the (n+1) clock causing a new cycle of integration/output to begin. Note that the
time between successive SI pulses must not exceed the maximum integration time of 100 msec.
The minimum integration time for any given array is determined by time required to clock out all the pixels in
the array and the time to discharge the pixels. The time required to discharge the pixels is a constant. Therefore,
the minimum integration period is simply a function of the clock frequency and the number of pixels in the array.
A slower clock speed increases the minimum integration time and reduces the maximum light level for saturation
on the output. The minimum integration time shown in this data sheet is based on the maximum clock frequency
of 5 MHz.
The minimum integration time can be calculated from the equation:
  T
int(min)
+
1
maximum clock frequency
 n
where:
n    is the number of pixels
In the case of the TSL210, the minimum integration time would be:
  T
int(min)
+ 200ns   640 + 128ms
It is important to note that not all pixels will have the same integration time if the clock frequency is varied while
data is being output.
相關(guān)PDF資料
PDF描述
TSL230BRD-TR IC LIGHT TO FREQUENCY CONV 8SOIC
TSL235RSM-LF IC LIGHT TO FREQUENCY CONV 3SMD
TSL237SM-LF IC LIGHT TO FREQUENCY CONV 3SMD
TSL237T IC LIGHT TO FREQUENCY CONV 4-TMB
TSL238D-TR IC LIGHT TO FREQUENCY CONV 8SOIC
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
TSL213 制造商:Rochester Electronics LLC 功能描述:- Bulk
TSL213A 制造商:Rochester Electronics LLC 功能描述:- Bulk
TSL214 制造商:Rochester Electronics LLC 功能描述:- Bulk
TSL215 制造商:TI 制造商全稱:Texas Instruments 功能描述:128 】 1 INTEGRATED OPTO SENSOR
TSL216 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Optoelectronic