參數(shù)資料
型號: MC145193F
廠商: MOTOROLA INC
元件分類: XO, clock
英文描述: 1.1 GHZ PLL FREQUENCY SYNTHESIZER
中文描述: PLL FREQUENCY SYNTHESIZER, 1100 MHz, PDSO20
封裝: PLASTIC, SO-20
文件頁數(shù): 11/24頁
文件大?。?/td> 240K
代理商: MC145193F
MC145193
11
MOTOROLA WIRELESS SEMICONDUCTOR
SOLUTIONS – RF AND IF DEVICE DATA
PDout
Single–Ended Phase/Frequency Detector Output (Pin 6)
This is a three–state current–source/sink output for use as
a loop error signal when combined with an external low–pass
filter. The phase/frequency detector is characterized by a
linear transfer function. The operation of the
phase/frequency detector is described below and is shown in
Figure 17.
POL bit (C7) in the C register = low (see Figure 14)
Frequency of fV > fR or Phase of fV Leading fR:
current–sinking pulses from a floating state
Frequency of fV < fR or Phase of fV Lagging fR:
current–sourcing pulses from a floating state
Frequency and Phase of fV = fR: essentially a floating
state; voltage at pin determined by loop filter
POL bit (C7) = high
Frequency of fV > fR or Phase of fV Leading fR:
current–sourcing pulses from a floating state
Frequency of fV < fR or Phase of fV Lagging fR:
current–sinking pulses from a floating state
Frequency and Phase of fV = fR: essentially a floating
state; voltage at pin determined by loop filter
This output can be enabled, disabled, and inverted via the
C register. If desired, PDout can be forced to the
high–impedance state by utilization of the disable feature in
the C register (bit C6). This is a patented feature. Similarly,
PDout is forced to the high–impedance state when the device
is put into standby (STBY bit C4 = high).
The PDout circuit is powered by VPD. The phase detector
gain is controllable by bits C3, C2, and C1: gain (in amps per
radian) = PDout current divided by 2
π
.
φ
R and
φ
V
(Pins 3 and 4)
Double–Ended Phase/Frequency Detector Outputs
These outputs can be combined externally to generate a
loop error signal. Through use of a Motorola patented
technique, the detector’s dead zone has been eliminated.
Therefore, the phase/frequency detector is characterized by
a linear transfer function. The operation of the
phase/frequency detector is described below and is shown in
Figure 17.
POL bit (C7) in the C register = low (see Figure 14)
Frequency of fV > fR or Phase of fV Leading fR:
φ
V =
negative pulses,
φ
R = essentially high
Frequency of fV < fR or Phase of fV Lagging fR:
φ
V =
essentially high,
φ
R = negative pulses
Frequency and Phase of fV = fR:
φ
V and
φ
R remain
essentially high, except for a small minimum time period
when both pulse low in phase
POL bit (C7) = high
Frequency of fV > fR or Phase of fV Leading fR:
φ
R =
negative pulses,
φ
V = essentially high
Frequency of fV < fR or Phase of fV Lagging fR:
φ
R =
essentially high,
φ
V = negative pulses
Frequency and Phase of fV = fR:
φ
V and
φ
R remain
essentially high, except for a small minimum time period
when both pulse low in phase
These outputs can be enabled, disabled, and
interchanged via C register bits C6 or C4. This is a patented
feature. Note that when disabled or in standby,
φ
R and
φ
V are
forced to their rest condition (high state).
The
φ
R and
φ
V output signal swing is approximately from
Gnd to VPD.
LD
Lock Detector Output (Pin 2)
This output is essentially at a high level with narrow
low–going pulses when the loop is locked (fR and fV of the
same phase and frequency). The output pulses low when fV
and fR are out of phase or different frequencies. LD is the
logical ANDing of
φ
R and
φ
V (see Figure 17).
This output can be enabled and disabled via the C register.
This is a patented feature. Upon power up, on–chip
initialization circuitry disables LD to a static low logic level to
prevent a false “l(fā)ock” signal. If unused, LD should be disabled
and left open.
The LD output signal swing is approximately from Gnd to
VDD.
Rx
External Resistor (Pin 8)
A resistor tied between this pin and Gnd, in conjunction
with bits in the C register, determines the amount of current
that the PDout pin sinks and sources. When bits C2 and C3
are both set high, the maximum current is obtained at PDout;
see Tables 4 and 5 for other current values. The
recommended value for Rx is 3.9 k
(preliminary). A value of
3.9 k
provides current at the PDout pin of approximately 1
mA @ VDD = 3 V and approximately 1.7 mA @ VDD = 5 V in
the 100% current mode. Note that VDD, not VPD, is a factor in
determining the current.
When the
φ
R and
φ
V outputs are used, the Rx pin may be
floated.
Table 4. PDout Current*, C1 = Low with
Output A notSelected as “Port”;
Also, Default Mode When Output A
Selected as “Port”
Bit C3
Bit C2
PDout Current*
70%
80%
90%
100%
0
0
1
1
0
1
0
1
* At the time the data sheet was printed, only the 100%
current mode was guaranteed. The reduced current
modes were for experimentation only.
Table 5. PDout Current*, C1 = High with
Output A notSelected as “Port”
Bit C3
Bit C2
PDout Current*
25%
50%
75%
100%
0
0
1
1
0
1
0
1
* At the time the data sheet was printed, only the 100%
current mode was guaranteed. The reduced current
modes were for experimentation only.
相關(guān)PDF資料
PDF描述
MC14521B 24-Stage Frequency Divider
MC14521 24-Stage Frequency Divider
MC14521BCP Non-inverting High-Speed MOSFET Driver 5-SOT-23 -40 to 125
MC14521BD 24-Stage Frequency Divider
MC14521BDR2 24-Stage Frequency Divider
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
MC14519BCL 制造商:Motorola Inc 功能描述: 制造商:Motorola Inc 功能描述:LOGIC MUX, QUAD, 2-INPUT, CMOS, 16 Pin, Ceramic, DIP
MC14519BD 制造商:Rochester Electronics LLC 功能描述:- Bulk
MC14519BF 制造商:Panasonic Industrial Company 功能描述:IC
MC1451CCP 制造商:PMD 功能描述:
MC14520B 制造商:Motorola Inc 功能描述: 制造商:ON Semiconductor 功能描述: