參數(shù)資料
型號: HFA1130IB
廠商: INTERSIL CORP
元件分類: 音頻/視頻放大
英文描述: CAPACITOR 1500UF 200V ELECT TSUP
中文描述: 1 CHANNEL, VIDEO AMPLIFIER, PDSO8
封裝: SOIC-8
文件頁數(shù): 5/12頁
文件大小: 162K
代理商: HFA1130IB
5
reaches a voltage equal to Q
P5
’s base + 2V
BE
(Q
P5
and
Q
N5
). Thus, Q
P5
clamps node Z whenever Z reaches V
H
.
R
1
provides a pull-up network to ensure functionality with the
clamp inputs floating. A similar description applies to the
symmetrical low clamp circuitry controlled by V
L
.
When the output is clamped, the negative input continues to
source a slewing current (I
CLAMP
) in an attempt to force the
output to the quiescent voltage defined by the input. Q
P5
must sink this current while clamping, because the -IN
current is always mirrored onto the high impedance node.
The clamping current is calculated as (V
-IN
- V
OUT
)/R
F
. As
an example, a unity gain circuit with V
IN
= 2V, V
H
= 1V, and
R
F
= 510
would have I
CLAMP
= (2-1)/510
= 1.96mA.
Note that I
CC
will increase by I
CLAMP
when the output is
clamp limited.
Clamp Accuracy
The clamped output voltage will not be exactly equal to the
voltage applied to V
H
or V
L
. Offset errors, mostly due to V
BE
mismatches, necessitate a clamp accuracy parameter which is
found in the device specifications. Clamp accuracy is a function
of the clamping conditions. Referring again to Figure 1, it can
be seen that one component of clamp accuracy is the V
BE
mismatch between the Q
X6
transistors, and the Q
X5
transistors. If the transistors always ran at the same current
level there would be no V
BE
mismatch, and no contribution to
the inaccuracy. The Q
X6
transistors are biased at a constant
current, but as described earlier, the current through Q
X5
is
equivalent to I
CLAMP
. V
BE
increases as I
CLAMP
increases,
causing the clamped output voltage to increase as well.
I
CLAMP
is a function of the overdrive level
(V
-IN
-V
OUTCLAMPED
)andR
F
,soclampaccuracydegradesas
the overdrive increases, or as R
F
decreases. As an example,
the specified accuracy of
±
60mV for a 2X overdrive with
R
F
= 510
degrades to
±
220mV for R
F
= 240
at the same
overdrive, or to
±
250mV for a 3X overdrive with R
F
= 510
.
Consideration must also be given to the fact that the clamp
voltages have an effect on amplifier linearity. The
“Nonlinearity Near Clamp Voltage” curve in the data sheet
illustrates the impact of several clamp levels on linearity.
Clamp Range
Unlike some competitor devices, both V
H
and V
L
have usable
ranges that cross 0V. While V
H
must be more positive than V
L
,
both may be positive or negative, within the range restrictions
indicatedinthespecifications.Forexample,theHFA1130could
be limited to ECL output levels by setting V
H
= -0.8V and
V
L
= -1.8V. V
H
and V
L
may be connected to the same voltage
(GND for instance) but the result won’t be in a DC output
voltage from an AC input signal. A 150 - 200mV AC signal will
still be present at the output.
Recovery from Overdrive
The output voltage remains at the clamp level as long as the
overdrive condition remains. When the input voltage drops
below the overdrive level (V
CLAMP
/A
VCL
) the amplifier will
return to linear operation. A time delay, known as the
Overdrive Recovery Time, is required for this resumption of
linear operation. The plots of “Unclamped Performance” and
“Clamped Performance” highlight the HFA1130’s
subnanosecond recovery time. The difference between the
unclamped and clamped propagation delays is the overdrive
recovery time. The appropriate propagation delays are 4.0ns
for the unclamped pulse, and 4.8ns for the clamped (2X
overdrive) pulse yielding an overdrive recovery time of
800ps. The measurement uses the 90% point of the output
transition to ensure that linear operation has resumed.
Note: The propagation delay illustrated is dominated by the
fixturing. The delta shown is accurate, but the true HFA1130
propagation delay is 500ps.
Use of Die in Hybrid Applications
This amplifier is designed with compensation to negate the
package parasitics that typically lead to instabilities. As a
result, the use of die in hybrid applications results in
overcompensated performance due to lower parasitic
capacitances. Reducing R
F
below the recommended values
for packaged units will solve the problem. For A
V
= +2 the
recommended starting point is 300
, while unity gain
applications should try 400
.
PC Board Layout
The frequency performance of this amplifier depends a great
deal on the amount of care taken in designing the PC board.
The use of low inductance components such as chip
resistors and chip capacitors is strongly recommended,
while a solid ground plane is a must!
Attention should be given to decoupling the power supplies.
A large value (10
μ
F) tantalum in parallel with a small value
chip (0.1
μ
F) capacitor works well in most cases.
Terminated microstrip signal lines are recommended at the
input and output of the device. Output capacitance, such as
that resulting from an improperly terminated transmission
line will degrade the frequency response of the amplifier and
may cause oscillations. In most cases, the oscillation can be
avoided by placing a resistor in series with the output.
Care must also be taken to minimize the capacitance to
ground seen by the amplifier’s inverting input. The larger this
capacitance, the worse the gain peaking, resulting in pulse
overshoot and possible instability. To this end, it is
recommended that the ground plane be removed under
traces connected to pin 2, and connections to pin 2 should
be kept as short as possible.
An example of a good high frequency layout is the
Evaluation Board shown below.
HFA1130
相關(guān)PDF資料
PDF描述
HFA1130IP 850MHz, Output Limiting, Low Distortion Current Feedback Operational Amplifier
HFA1130EVAL 850MHz, Output Limiting, Low Distortion Current Feedback Operational Amplifier
HGTD1N120BNS 5.3A, 1200V, NPT Series N-Channel IGBT
HGTD1N120CNS 6.2A, 1200V, NPT Series N-Channel IGBT
HGTP1N120BN 5.3A, 1200V, NPT Series N-Channel IGBT(5.3A, 1200V,NPT系列N溝道絕緣柵雙極型晶體管)
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
HFA1130IB96 功能描述:IC BUFFER CFA 850MHZ 8-SOIC RoHS:否 類別:集成電路 (IC) >> Linear - Amplifiers - Instrumentation 系列:- 標(biāo)準(zhǔn)包裝:50 系列:LinCMOS™ 放大器類型:通用 電路數(shù):4 輸出類型:- 轉(zhuǎn)換速率:0.05 V/µs 增益帶寬積:110kHz -3db帶寬:- 電流 - 輸入偏壓:0.7pA 電壓 - 輸入偏移:210µV 電流 - 電源:57µA 電流 - 輸出 / 通道:30mA 電壓 - 電源,單路/雙路(±):3 V ~ 16 V,±1.5 V ~ 8 V 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:14-SOIC(0.154",3.90mm 寬) 供應(yīng)商設(shè)備封裝:14-SOIC 包裝:管件 產(chǎn)品目錄頁面:865 (CN2011-ZH PDF) 其它名稱:296-1834296-1834-5
HFA1130IBZ 功能描述:運(yùn)算放大器 - 運(yùn)放 W/ANL OPAMP 850MHZ CFB CLMP IND RoHS:否 制造商:STMicroelectronics 通道數(shù)量:4 共模抑制比(最小值):63 dB 輸入補(bǔ)償電壓:1 mV 輸入偏流(最大值):10 pA 工作電源電壓:2.7 V to 5.5 V 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:QFN-16 轉(zhuǎn)換速度:0.89 V/us 關(guān)閉:No 輸出電流:55 mA 最大工作溫度:+ 125 C 封裝:Reel
HFA1130IBZ 制造商:Intersil Corporation 功能描述:Operational Amplifier (Op-Amp) IC
HFA1130IBZ-T 功能描述:運(yùn)算放大器 - 運(yùn)放 W/ANL OPAMP 850MHZ CFB CLMP IND RoHS:否 制造商:STMicroelectronics 通道數(shù)量:4 共模抑制比(最小值):63 dB 輸入補(bǔ)償電壓:1 mV 輸入偏流(最大值):10 pA 工作電源電壓:2.7 V to 5.5 V 安裝風(fēng)格:SMD/SMT 封裝 / 箱體:QFN-16 轉(zhuǎn)換速度:0.89 V/us 關(guān)閉:No 輸出電流:55 mA 最大工作溫度:+ 125 C 封裝:Reel
HFA1130IJ 制造商:Rochester Electronics LLC 功能描述:- Bulk