參數(shù)資料
型號: PNX1311
廠商: NXP Semiconductors N.V.
英文描述: Media Processors
中文描述: 媒體處理器
文件頁數(shù): 86/548頁
文件大?。?/td> 6050K
代理商: PNX1311
第1頁第2頁第3頁第4頁第5頁第6頁第7頁第8頁第9頁第10頁第11頁第12頁第13頁第14頁第15頁第16頁第17頁第18頁第19頁第20頁第21頁第22頁第23頁第24頁第25頁第26頁第27頁第28頁第29頁第30頁第31頁第32頁第33頁第34頁第35頁第36頁第37頁第38頁第39頁第40頁第41頁第42頁第43頁第44頁第45頁第46頁第47頁第48頁第49頁第50頁第51頁第52頁第53頁第54頁第55頁第56頁第57頁第58頁第59頁第60頁第61頁第62頁第63頁第64頁第65頁第66頁第67頁第68頁第69頁第70頁第71頁第72頁第73頁第74頁第75頁第76頁第77頁第78頁第79頁第80頁第81頁第82頁第83頁第84頁第85頁當(dāng)前第86頁第87頁第88頁第89頁第90頁第91頁第92頁第93頁第94頁第95頁第96頁第97頁第98頁第99頁第100頁第101頁第102頁第103頁第104頁第105頁第106頁第107頁第108頁第109頁第110頁第111頁第112頁第113頁第114頁第115頁第116頁第117頁第118頁第119頁第120頁第121頁第122頁第123頁第124頁第125頁第126頁第127頁第128頁第129頁第130頁第131頁第132頁第133頁第134頁第135頁第136頁第137頁第138頁第139頁第140頁第141頁第142頁第143頁第144頁第145頁第146頁第147頁第148頁第149頁第150頁第151頁第152頁第153頁第154頁第155頁第156頁第157頁第158頁第159頁第160頁第161頁第162頁第163頁第164頁第165頁第166頁第167頁第168頁第169頁第170頁第171頁第172頁第173頁第174頁第175頁第176頁第177頁第178頁第179頁第180頁第181頁第182頁第183頁第184頁第185頁第186頁第187頁第188頁第189頁第190頁第191頁第192頁第193頁第194頁第195頁第196頁第197頁第198頁第199頁第200頁第201頁第202頁第203頁第204頁第205頁第206頁第207頁第208頁第209頁第210頁第211頁第212頁第213頁第214頁第215頁第216頁第217頁第218頁第219頁第220頁第221頁第222頁第223頁第224頁第225頁第226頁第227頁第228頁第229頁第230頁第231頁第232頁第233頁第234頁第235頁第236頁第237頁第238頁第239頁第240頁第241頁第242頁第243頁第244頁第245頁第246頁第247頁第248頁第249頁第250頁第251頁第252頁第253頁第254頁第255頁第256頁第257頁第258頁第259頁第260頁第261頁第262頁第263頁第264頁第265頁第266頁第267頁第268頁第269頁第270頁第271頁第272頁第273頁第274頁第275頁第276頁第277頁第278頁第279頁第280頁第281頁第282頁第283頁第284頁第285頁第286頁第287頁第288頁第289頁第290頁第291頁第292頁第293頁第294頁第295頁第296頁第297頁第298頁第299頁第300頁第301頁第302頁第303頁第304頁第305頁第306頁第307頁第308頁第309頁第310頁第311頁第312頁第313頁第314頁第315頁第316頁第317頁第318頁第319頁第320頁第321頁第322頁第323頁第324頁第325頁第326頁第327頁第328頁第329頁第330頁第331頁第332頁第333頁第334頁第335頁第336頁第337頁第338頁第339頁第340頁第341頁第342頁第343頁第344頁第345頁第346頁第347頁第348頁第349頁第350頁第351頁第352頁第353頁第354頁第355頁第356頁第357頁第358頁第359頁第360頁第361頁第362頁第363頁第364頁第365頁第366頁第367頁第368頁第369頁第370頁第371頁第372頁第373頁第374頁第375頁第376頁第377頁第378頁第379頁第380頁第381頁第382頁第383頁第384頁第385頁第386頁第387頁第388頁第389頁第390頁第391頁第392頁第393頁第394頁第395頁第396頁第397頁第398頁第399頁第400頁第401頁第402頁第403頁第404頁第405頁第406頁第407頁第408頁第409頁第410頁第411頁第412頁第413頁第414頁第415頁第416頁第417頁第418頁第419頁第420頁第421頁第422頁第423頁第424頁第425頁第426頁第427頁第428頁第429頁第430頁第431頁第432頁第433頁第434頁第435頁第436頁第437頁第438頁第439頁第440頁第441頁第442頁第443頁第444頁第445頁第446頁第447頁第448頁第449頁第450頁第451頁第452頁第453頁第454頁第455頁第456頁第457頁第458頁第459頁第460頁第461頁第462頁第463頁第464頁第465頁第466頁第467頁第468頁第469頁第470頁第471頁第472頁第473頁第474頁第475頁第476頁第477頁第478頁第479頁第480頁第481頁第482頁第483頁第484頁第485頁第486頁第487頁第488頁第489頁第490頁第491頁第492頁第493頁第494頁第495頁第496頁第497頁第498頁第499頁第500頁第501頁第502頁第503頁第504頁第505頁第506頁第507頁第508頁第509頁第510頁第511頁第512頁第513頁第514頁第515頁第516頁第517頁第518頁第519頁第520頁第521頁第522頁第523頁第524頁第525頁第526頁第527頁第528頁第529頁第530頁第531頁第532頁第533頁第534頁第535頁第536頁第537頁第538頁第539頁第540頁第541頁第542頁第543頁第544頁第545頁第546頁第547頁第548頁
PNX1300/01/02/11 Data Book
Philips Semiconductors
5-4
PRELIMINARY SPECIFICATION
5.3.3
Miss Processing Order
When a miss occurs, the data cache fills the block con-
taining the requested word from the critical word first.
The CPU is stalled until the first word is transferred. The
block is then filled up while the CPU keeps running.
5.3.4
Replacement Policies, Coherency
The cache implements a copyback replacement policy
with one dirty bit per 64-byte block. Thus, when a miss
occurs and the block selected for replacement has its
dirty bit set, the dirty block must be written to main mem-
ory to preserve its modified contents. On PNX1300, the
dirty block is written to memory before the needed block
is fetched.
Coherency is not maintained in any way by hardware be-
tween the data cache, the instruction cache, and main
memory. Special operations are available to implement
cache coherency in software. See
Section 5.6,
Cache
Coherency,
for a discussion of coherency issues.
Write misses are handled with an allocate-on-write poli-
cy
the write that caused the miss stores its data in the
cache after the missing block is fetched into the cache.
The cache implements a hierarchical LRU replacement
algorithm to determine which of the eight elements
(blocks) in a set is replaced. The algorithm partitions the
eight set elements into four groups, each group with two
elements. The hierarchical LRU replacement victim is
determined by selecting the least-recently used group of
two elements and then selecting the least-recently used
element in that group. This hierarchical algorithm yields
performance close to full LRU but is simpler to imple-
ment.
See
Section 5.5,
LRU Algorithm,
for a full discussion of
the LRU algorithm.
5.3.5
Alignment, Partial-Word Transfers,
Endian-ness
The cache implements 32-bit word, 16-bit half-word, and
8-bit byte transfers. All transfers, however, must be to
addresses that are naturally aligned; that is, 32-bit words
must be aligned on 32-bit boundaries, and 16-bit half-
words must be aligned on 16-bit boundaries.
Like other PNX1300 processing units, the CPU has the
capability to use either big- or little-endian byte order. It
is recommended that all units and the CPU run with the
same endian-ness. Detailed endian-ness description
can be found in
Appendix C,
Endian-ness.
5.3.6
Dual Ports
To allow two accesses to proceed in parallel, the data
cache is quasi-dual ported. The cache is implemented as
eight banks of single-ported memory, but the hardware
allows each bank to operate independently. Thus, when
the addresses of two simultaneous accesses select two
different banks, both accesses can complete simulta-
neously. Bank selection is determined by the three low-
order address bits [4..2] of each address. Thus, the
words in a 64-byte cache block are distributed among the
eight blocks, which prevents conflicts between two simul-
taneously issued accesses to adjacent words in a cache
block. The PNX1300 compiling system attempts to avoid
bank conflicts as much as possible.
The dual-ported cache can execute the load and store
opcodes (ild8d, uld8d, ild16d, uld16d, ld32d, h_st8d,
h_st16d, h_st32d, ild8r, uld8r, ild16r, uld16r, ld32r,
ild16x, uld16x, ld32x) in either or both of the two ports.
The special opcodes alloc, dcb, dinvalid, pref, rdtag and
rdstatus can only be executed in the second port, not in
the first port. Whenever any of these special opcodes is
issued in the second port, there should not be a concur-
rent load or store operation in the first. This is a special
scheduling constraint.
5.3.7
Cache Locking
The data cache allows the contents of up to one-half of
its blocks to be locked. Thus, on PNX1300, up to 8 KB of
the cache can be used as a high-speed local data mem-
ory. Only four out of eight blocks in any set can be
locked.
A locked block is never chosen as a victim by the re-
placement algorithm; its contents remain undisturbed un-
til either (1) the block
s locked status is changed explicitly
by software, or (2) a dinvalid operation is executed that
targets the locked block.
Cache locking occurs only for the data in the address
range
described
by
DC_LOCK_ADDR and DC_LOCK_SIZE. The granulari-
ty of the address range is one 64-byte cache block. The
MMIO register DC_LOCK_CTL contains the cache-lock-
ing enable bit DC_LOCK_ENABLE.
Figure 5-5
shows
the layout of the data-cache lock registers. Locking will
occur for an address if locking is enabled and both of the
following are true:
1. The address is greater than or equal to the value in
DC_LOCK_ADDR.
2. The address is less than the sum of the values in
DC_LOCK_ADDR and DC_LOCK_SIZE.
Programmers (or compilers) must combine all data that
needs to be locked into this single linear address range.
Setting DC_LOCK_ENABLE to
1
causes the following
sequence of events:
1. All blocks that are in cache locations that will be used
for locking are copied back to main memory (if they
are dirty) and removed from the cache.
2. All blocks in the lock range are fetched from main
memory into the cache. If any block in the lock range
was already in the cache, it
s first copied back into
main memory (if it
s dirty) and invalidated.
3. The LRU status of any set that contains locked blocks
is set to the initialization value.
4. Cache locking is activated so that the locked blocks
cannot be victims of the replacement algorithm.
This sequence of events is triggered by writing
1
to
DC_LOCK_ENABLE even if the enable is already set to
the
MMIO
registers
相關(guān)PDF資料
PDF描述
PNX1500G Connected Media Processor
PNX1501G Connected Media Processor
PNX1502G Connected Media Processor
PNX2000 Audio video input processor
PNX2000HL Audio video input processor
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
PNX1311EH,557 功能描述:視頻 IC NEXPERIA MEDIA PROCESSOR RoHS:否 制造商:Fairchild Semiconductor 工作電源電壓:5 V 電源電流:80 mA 最大工作溫度:+ 85 C 封裝 / 箱體:TSSOP-28 封裝:Reel
PNX1311EH/G 功能描述:數(shù)字信號處理器和控制器 - DSP, DSC NEXPERIA MEDIA PROC 166MHZ RoHS:否 制造商:Microchip Technology 核心:dsPIC 數(shù)據(jù)總線寬度:16 bit 程序存儲器大小:16 KB 數(shù)據(jù) RAM 大小:2 KB 最大時鐘頻率:40 MHz 可編程輸入/輸出端數(shù)量:35 定時器數(shù)量:3 設(shè)備每秒兆指令數(shù):50 MIPs 工作電源電壓:3.3 V 最大工作溫度:+ 85 C 封裝 / 箱體:TQFP-44 安裝風(fēng)格:SMD/SMT
PNX1311EH/G,557 功能描述:數(shù)字信號處理器和控制器 - DSP, DSC NEXPERIA MEDIA PROC RoHS:否 制造商:Microchip Technology 核心:dsPIC 數(shù)據(jù)總線寬度:16 bit 程序存儲器大小:16 KB 數(shù)據(jù) RAM 大小:2 KB 最大時鐘頻率:40 MHz 可編程輸入/輸出端數(shù)量:35 定時器數(shù)量:3 設(shè)備每秒兆指令數(shù):50 MIPs 工作電源電壓:3.3 V 最大工作溫度:+ 85 C 封裝 / 箱體:TQFP-44 安裝風(fēng)格:SMD/SMT
PNX1500E 制造商:PHILIPS 制造商全稱:NXP Semiconductors 功能描述:Connected Media Processor
PNX1500E,557 功能描述:數(shù)字信號處理器和控制器 - DSP, DSC PNX1500, 240MHZ RoHS:否 制造商:Microchip Technology 核心:dsPIC 數(shù)據(jù)總線寬度:16 bit 程序存儲器大小:16 KB 數(shù)據(jù) RAM 大小:2 KB 最大時鐘頻率:40 MHz 可編程輸入/輸出端數(shù)量:35 定時器數(shù)量:3 設(shè)備每秒兆指令數(shù):50 MIPs 工作電源電壓:3.3 V 最大工作溫度:+ 85 C 封裝 / 箱體:TQFP-44 安裝風(fēng)格:SMD/SMT