參數(shù)資料
型號: PDSP16510A
廠商: Mitel Networks Corporation
英文描述: Stand Alone FFT Processor(獨立快速傅里葉變換(FFT)處理器)
中文描述: 攻殼機動隊FFT處理器(獨立快速傅里葉變換(FFT)的處理器)
文件頁數(shù): 13/25頁
文件大?。?/td> 270K
代理商: PDSP16510A
PDSP16510
13
Data). This bit must not be set in the other devices. Since all
devices are supplied from a common input bus and have a
common source of control parameters, this Bit 12 inversion is
best mechanized with an Exclusive OR gate in the AUX12
input line of the first device. The input can then be inverted
when DEF is active but otherwise not be effected. Once the
first device has been started with the DEF edge, the sequence
will continue automatically using the LFLG /INEN connection
between devices.
In many applications data is transformed continuously
after power on, and the concept of a first data sample does not
exist. If, however , the opposite is true, the first data sample
must be present on the input pins such that it can be loaded
with the second rising DIS edge after DEF has gone in-active.
The data must meet the set up and hold times given in Table
1, and DEF itself must meet the parameters normally met by
the INEN rising edge. The latter requirement is necessary to
avoid a possible one DIS cycle variance, due the internal DEF
synchronization logic. If the position of the first data sample is
not important, it is not necessary for DEF to have any set up
specification.
Without the feedback from the last device, the first device
would wait for another externally supplied initialising pulse. In
such a system with N devices in parallel, then N continuous
transforms must be executed before the first device can wait
for a new INEN input.
When only one output processor is provided the data
outputs from all devices are connected together, and internal
logic will enable the tri-state outputs when a device is ready to
output data i.e. DAV goes active. When data blocks are
overlapped it is possible that the output rate requirements will
limit the input sampling rate (see section on Multiple Device
Sampling Rates). Additional output processors will remove
this restriction, and the correct choice of multiple device
operating mode will optimise the sampling rates that can be
achieved with a given number of devices.
The synchronisation intervals, necessary to co-ordinate
input and output operations with the transform operation, lead,
in effect, to some uncertainty in the time needed to complete
a transform. Thus a particular device in a multiple device
system can effectively complete a transform in less system
clock periods than another device in the same system. To
prevent one device turning on its output bus before the
previous one has finished, it is either necessary to use a faster
output rate than would otherwise be required, or to use the
inverted DAV output from one device to drive the DEN input of
the next. The latter option allows DIS and DOS to be con-
nected together, and ensures that the second device will not
output data until the first device has finished.
This method of driving the DEN input from the inverted
DAV output from a previous device requires a change to the
single device DAV and DEN operation. If DEN is active at the
end of a transform in a multiple device system, the DAV output
will go active when the output circuit has been primed by the
DOS strobes. This operation is identical to that provided for a
single device system, and is transparent to the user as long as
DEN and DOS are active . If DEN is not active, however, the
DAV output will not asynchronously go active as happens in
a single device system. Instead DAV will only go active when
DEN eventually goes active. Since DEN is the inverted DAV
output from a previous device, it is thus never possible for two
devices to be actively outputting data. The DAV active going
edge remains synchronised to the DOS strobe since the DEN
input will only go active when a previous DAV goes in-active.
A further change to the output circuitry ensures that the output
buffer is primed even though DEN is not active. The first word,
however, only progresses as far as the final output latch. The
output bus is not enabled, and address increments do not
Fig 10. Three Device System with Separate Load, Transform, and Dump Operations
DUMP B1
TRANSFORM A1
TRANSFORM B1
LFLG A
DAV A
INEN B
LFLG B
DAV B
DUMP A1
INEN C
LFLG C
DAV C
LOAD B1
LOAD C1
LOAD A2
DUMP C1
INTERNAL
START
DEF
DIS / DOS
INEN A
TRANSFORM C1
LOAD A1
相關(guān)PDF資料
PDF描述
PDSP16515AA0AC Stand Alone FFT Processor
PDSP16515AA0GC Stand Alone FFT Processor
PDSP16515AC0AC Stand Alone FFT Processor
PDSP16515AC0GC Stand Alone FFT Processor
PDSP16515A Stand Alone FFT Processor
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
PDSP16510A/B0/GC 制造商:Microsemi Corporation 功能描述:STAND ALONE FFT PROCESSOR 132CQFP - Bulk
PDSP16510A/BO/AC 制造商:Microsemi Corporation 功能描述:
PDSP16510AA0AC 制造商:ZARLINK 制造商全稱:Zarlink Semiconductor Inc 功能描述:Stand Alone FFT Processor
PDSP16510AA0GC 制造商:ZARLINK 制造商全稱:Zarlink Semiconductor Inc 功能描述:Stand Alone FFT Processor
PDSP16510AB0AC 制造商:ZARLINK 制造商全稱:Zarlink Semiconductor Inc 功能描述:Stand Alone FFT Processor