MC44002 MC44007
15
MOTOROLA ANALOG IC DEVICE DATA
A
D
Bits 6,7
Bits 6,7
Bits 6,7
Bits 6,7
Bits 6,7
I-88
I-87
I-7A
I-79
I-78
Figure 7. MC44002/7 Memory Map
Data 0
Data 1
Data 2
Data 3
Data 4
Data 5
Data 6
Data 7 MSB
LSB
A
D
A
D
A
D
A
D
M
D
M
A
M
A
M
A
M
A
M
A
Memory
Figure 7 shows a diagram of the MC44002/7 Memory
Map. It has 18 bytes of memory which are located at hex
sub-addresses 77 to 88. Sub-address 77 is used to set up the
vertical timebase mode of the IC and for S-VHS switching,
and consists of 8 separate data bits. The remaining 17 bytes
use the least significant 6-bits as an analog control register.
The contents of each are D/A converted, providing an analog
control current which is distributed to the appropriate part of
the circuit. Bits 6 and 7 are used singularly for switching
control functions.
Chroma Decoder
The main function of this section is to decode the incoming
composite video, which may be in any of the PAL, NTSC or
SECAM (MC44002 only) Standards, and to retrieve the
luminance and color difference signals. In addition, the signal
filtering and luma delay line functions are carried out in this
section by means of sampled data filters.
The entire decoder section operates in sampled data
mode using clocks generated by external crystals. The
oscillator, which is phase-locked in the usual way for
PAL/NTSC modes, provides the clock function for the whole
circuit. The crystals are selected by the MCU by means of a
control bit (XS). Only crystals appropriate to the standards
which are going to be received need to be fitted. A 17.7 MHz
crystal (4x PAL subcarrier) is used for PAL and SECAM
systems (50 Hz, 625 lines); and 14.3 MHz (4x NTSC
subcarrier) for the NTSC system (60 Hz, 525 lines). Nearly all
the filters, together with the luma delay line and peaking,
have been integrated, requiring no external components or
any adjustment. The filter characteristics are entirely
determined by the clocks and by capacitor ratios, and are
thus completely independent of variations in the
manufacturing process. The PAL/NTSC subcarrier PLL and
ACC loop filters have not been integrated in order to facilitate
testing. These filters consist of fixed external components.
Figure 8 is a block diagram of the main features of the
chroma decoder. Selection is first made between the Video 1
and Video 2 inputs. These may be either normal composite
video or separate luma and chroma which may enter the IC at
either pin. Commands from the MCU are used to route the
signals through the appropriate delay and filter sections.
In PAL/NTSC, a variable low pass filter, which can be
software bypassed (control bit T3), is then used to
compensate for IF filtering and the Q of the external sound
traps. Filter response is controlled by means of control bits
T1 and T2. It is not recommended to use this filter in SECAM
or in S–VHS, as luma–chroma delays will not be optimized.
Next, the video enters the luma path. The PAL/NTSC or
SECAM chroma signals are separated out by transversal
high pass filters. In SECAM mode, the chroma trap frequency
is dynamically steered to follow the instantaneous frequency
of the chroma.
Then, another transversal filter provides luma peaking,
which is also active in S–VHS mode. The high frequency
luma may be peaked (at about 3.0 MHz with the 17.7 MHz
crystal, and 2.4 MHz with the 14.3 MHz crystal) in 7 steps up
to a maximum of 8.5 dB, by a control word from the MCU.
Another control word is used to trim the delay in the luma
channel. Five steps of 56 ns (70 ns with the 14.3 MHz crystal)
are possible, giving a total programmable delay of 280 ns.
Steps 6 and 7 are used in S–VHS mode. The resulting
processed luma signal then proceeds to the color difference
section after being low–pass filtered by an active filter to
remove components of the crystal frequency, and twice that
frequency. The luma component (Y1) is made available at
Pin 29 for use with auxiliary external functions, as well as
testing.
When in the S–VHS mode, the S–VHS control bit controls
the signal paths. The luma signal bypasses the first section of
the luma channel, which contains the chroma trap. The
S–VHS chroma is passed directly to the PAL/NTSC decoder
without further filtering.
As all the delay and filter responses are determined by the
crystal, they automatically commute to the new standard
when the crystal is changed over. Thus, when the 14.3 MHz
clock is being used, the chroma trap moves to 3.58 MHz.
The filtered PAL/NTSC and SECAM chroma signals are
decoded by their respective circuits. The PAL/NTSC decoder
employs a conventional design, using ACC action for gain
control and the common double balanced multipliers to
retrieve the color difference signals. The SECAM decoder is
discussed in a separate subsection.