M
Triple and Quad, 2:1 Video Multiplexer-
Amplifiers with Fixed and Settable Gain
14
______________________________________________________________________________________
Detailed Description
The MAX4024/MAX4026 combine three and four 2:1
multiplexers, respectively, with a fixed gain of 2 amplifi-
er. The MAX4023/MAX4025 combine three and four 2:1
multiplexers, respectively, with an adjustable gain out-
put amplifier optimized for a closed-loop gain of +1 or
greater. These devices operate from a single-supply
voltage of +4.5V to +11V or from dual supplies of
±2.25V to ±5.5V. The outputs may be placed in a high-
impedance state and the supply current minimized by
forcing the EN pin low. The input multiplexers feature
short 25ns channel-switching times and small 10mV
P-P
switching transients. These devices feature voltage-
feedback output amplifiers that achieve up to 363V/μs
slew rates and up to 220MHz -3dB bandwidths. They
also feature excellent differential gain/phase perfor-
mance.
The MAX4023
–
MAX4026 feature an A/B pin, which is
an input pin for selecting either channel A or B. Drive
A/B high to select channel A or drive A/B low to select
channel B. Channel A is automatically selected if A/B is
left unconnected.
Applications Information
Feedback and Gain Resistor Selection
(MAX4023/MAX4025)
Select the MAX4023/MAX4025 gain-setting feedback
R
F
and R
G
resistors to fit your application. Large resis-
tor values increase voltage noise and interact with the
amplifier
’
s input and PC board capacitance. This can
generate undesirable poles and zeros, and can
decrease bandwidth or cause oscillations.
Stray capacitance at the FB pin produces peaking in
the frequency-response curve. Keep the capacitance
at FB as low as possible by using surface-mount resis-
tors and by avoiding the use of a ground plane beneath
or beside these resistors and the FB pin. Some capaci-
tance is unavoidable. If necessary, its effects can be
neutralized by adjusting R
F
. Use 1% resistors to main-
tain gain accuracy.
Low-Power Shutdown Mode
All parts feature a low-power shutdown mode that is
activated by driving the EN input low. Placing the
amplifier in shutdown mode reduces the quiescent sup-
ply current to below 4mA and places the output into a
high-impedance state, typically 75k
(MAX4023/
MAX4025). Multiple devices may be paralleled to con-
struct larger switch matrices by connecting the outputs
of several devices together and disabling all but one of
the paralleled amplifiers
’
outputs.
For MAX4023/MAX4025 application circuits operating
with a closed-loop gain of +1 or greater, consider the
external-feedback network impedance of all devices
used in the mux application when calculating the total
load on the output amplifier of the active device. The
MAX4024/MAX4026 have a fixed gain of +2 that is
internally set with two 500
thin-film resistors. The
impedance of the internal feedback resistors must be
taken into account when operating multiple MAX4024/
MAX4026s in large multiplexer applications.
For normal operation, drive EN high. Note that the
MAX4023
–
MAX4026 have internal pullup circuitry on
EN, so if left unconnected, it is automatically pulled up
to V
CC
.
Layout and Power-Supply Bypassing
The MAX4023
–
MAX4026 have high bandwidths and
consequently require careful board layout, including
the possible use of constant-impedance microstrip or
stripline techniques.
To realize the full AC performance of these high-speed
amplifiers, pay careful attention to power-supply
bypassing and board layout. The PC board should
have at least two layers: a signal and power layer on
one side, and a large, low-impedance ground plane on
the other side. The ground plane should be as free of
voids as possible, with one exception: The feedback
(FB) should have as low a capacitance to ground as
possible. Whether or not a constant-impedance board
is used, it is best to observe the following guidelines
when designing the board:
1) Do not use wire-wrapped boards or breadboards.
2) Do not use IC sockets; they increase parasitic
capacitance and inductance.
3) Keep signal lines as short and straight as possible.
Do not make 90
°
turns; round all corners.
4) Observe high-frequency bypassing techniques to
maintain the amplifier
’
s accuracy and stability.
5) Use surface-mount components. They generally
have shorter bodies and lower parasitic reactance,
yielding better high-frequency performance than
through-hole components.
The bypass capacitors should include a 0.1μF ceramic
surface-mount capacitor between each supply pin and
the ground plane, located as close to the package as
possible. Optionally, place a 10μF tantalum capacitor
at the power-supply
’
s point of entry to the PC board to
ensure the integrity of incoming supplies. The power-
supply traces should lead directly from the tantalum
capacitor to the V
CC
and V
EE
pins. To minimize para-