參數(shù)資料
型號(hào): M7A3P400-FGG484
元件分類(lèi): FPGA
英文描述: FPGA, 400000 GATES, 350 MHz, PBGA484
封裝: 1 MM PITCH, GREEN, FBGA-484
文件頁(yè)數(shù): 225/246頁(yè)
文件大小: 3010K
代理商: M7A3P400-FGG484
第1頁(yè)第2頁(yè)第3頁(yè)第4頁(yè)第5頁(yè)第6頁(yè)第7頁(yè)第8頁(yè)第9頁(yè)第10頁(yè)第11頁(yè)第12頁(yè)第13頁(yè)第14頁(yè)第15頁(yè)第16頁(yè)第17頁(yè)第18頁(yè)第19頁(yè)第20頁(yè)第21頁(yè)第22頁(yè)第23頁(yè)第24頁(yè)第25頁(yè)第26頁(yè)第27頁(yè)第28頁(yè)第29頁(yè)第30頁(yè)第31頁(yè)第32頁(yè)第33頁(yè)第34頁(yè)第35頁(yè)第36頁(yè)第37頁(yè)第38頁(yè)第39頁(yè)第40頁(yè)第41頁(yè)第42頁(yè)第43頁(yè)第44頁(yè)第45頁(yè)第46頁(yè)第47頁(yè)第48頁(yè)第49頁(yè)第50頁(yè)第51頁(yè)第52頁(yè)第53頁(yè)第54頁(yè)第55頁(yè)第56頁(yè)第57頁(yè)第58頁(yè)第59頁(yè)第60頁(yè)第61頁(yè)第62頁(yè)第63頁(yè)第64頁(yè)第65頁(yè)第66頁(yè)第67頁(yè)第68頁(yè)第69頁(yè)第70頁(yè)第71頁(yè)第72頁(yè)第73頁(yè)第74頁(yè)第75頁(yè)第76頁(yè)第77頁(yè)第78頁(yè)第79頁(yè)第80頁(yè)第81頁(yè)第82頁(yè)第83頁(yè)第84頁(yè)第85頁(yè)第86頁(yè)第87頁(yè)第88頁(yè)第89頁(yè)第90頁(yè)第91頁(yè)第92頁(yè)第93頁(yè)第94頁(yè)第95頁(yè)第96頁(yè)第97頁(yè)第98頁(yè)第99頁(yè)第100頁(yè)第101頁(yè)第102頁(yè)第103頁(yè)第104頁(yè)第105頁(yè)第106頁(yè)第107頁(yè)第108頁(yè)第109頁(yè)第110頁(yè)第111頁(yè)第112頁(yè)第113頁(yè)第114頁(yè)第115頁(yè)第116頁(yè)第117頁(yè)第118頁(yè)第119頁(yè)第120頁(yè)第121頁(yè)第122頁(yè)第123頁(yè)第124頁(yè)第125頁(yè)第126頁(yè)第127頁(yè)第128頁(yè)第129頁(yè)第130頁(yè)第131頁(yè)第132頁(yè)第133頁(yè)第134頁(yè)第135頁(yè)第136頁(yè)第137頁(yè)第138頁(yè)第139頁(yè)第140頁(yè)第141頁(yè)第142頁(yè)第143頁(yè)第144頁(yè)第145頁(yè)第146頁(yè)第147頁(yè)第148頁(yè)第149頁(yè)第150頁(yè)第151頁(yè)第152頁(yè)第153頁(yè)第154頁(yè)第155頁(yè)第156頁(yè)第157頁(yè)第158頁(yè)第159頁(yè)第160頁(yè)第161頁(yè)第162頁(yè)第163頁(yè)第164頁(yè)第165頁(yè)第166頁(yè)第167頁(yè)第168頁(yè)第169頁(yè)第170頁(yè)第171頁(yè)第172頁(yè)第173頁(yè)第174頁(yè)第175頁(yè)第176頁(yè)第177頁(yè)第178頁(yè)第179頁(yè)第180頁(yè)第181頁(yè)第182頁(yè)第183頁(yè)第184頁(yè)第185頁(yè)第186頁(yè)第187頁(yè)第188頁(yè)第189頁(yè)第190頁(yè)第191頁(yè)第192頁(yè)第193頁(yè)第194頁(yè)第195頁(yè)第196頁(yè)第197頁(yè)第198頁(yè)第199頁(yè)第200頁(yè)第201頁(yè)第202頁(yè)第203頁(yè)第204頁(yè)第205頁(yè)第206頁(yè)第207頁(yè)第208頁(yè)第209頁(yè)第210頁(yè)第211頁(yè)第212頁(yè)第213頁(yè)第214頁(yè)第215頁(yè)第216頁(yè)第217頁(yè)第218頁(yè)第219頁(yè)第220頁(yè)第221頁(yè)第222頁(yè)第223頁(yè)第224頁(yè)當(dāng)前第225頁(yè)第226頁(yè)第227頁(yè)第228頁(yè)第229頁(yè)第230頁(yè)第231頁(yè)第232頁(yè)第233頁(yè)第234頁(yè)第235頁(yè)第236頁(yè)第237頁(yè)第238頁(yè)第239頁(yè)第240頁(yè)第241頁(yè)第242頁(yè)第243頁(yè)第244頁(yè)第245頁(yè)第246頁(yè)
ProASIC3/E Flash Family FPGAs
1- 2
v2.1
FPGAs). Therefore, Flash-based ProASIC3 FPGAs do not
require
system
configuration
components
such
as
EEPROMs
or
microcontrollers
to
load
device
configuration data. This reduces bill-of-materials costs
and PCB area, and increases security and system
reliability.
Live at Power-Up
The Actel Flash-based ProASIC3 devices support Level 0
of the LAPU classification standard. This feature helps in
system component initialization, execution of critical
tasks before the processor wakes up, setup and
configuration of memory blocks, clock generation, and
bus activity management. The LAPU feature of Flash-
based ProASIC3 devices greatly simplifies total system
design and reduces total system cost, often eliminating
the need for CPLDs and clock generation PLLs that are
used for these purposes in a system. In addition, glitches
and brownouts in system power will not corrupt the
ProASIC3 device's Flash configuration, and unlike SRAM-
based FPGAs, the device will not have to be reloaded
when system power is restored. This enables the
reduction or complete removal of the configuration
PROM, expensive voltage monitor, brownout detection,
and clock generator devices from the PCB design. Flash-
based ProASIC3 devices simplify total system design and
reduce cost and design risk while increasing system
reliability and improving system initialization time.
Firm Errors
Firm errors occur most commonly when high-energy
neutrons, generated in the upper atmosphere, strike a
configuration cell of an SRAM FPGA. The energy of the
collision can change the state of the configuration cell
and thus change the logic, routing, or I/O behavior in an
unpredictable way. These errors are impossible to
prevent in SRAM FPGAs. The consequence of this type of
error can be a complete system failure. Firm errors do
not exist in the configuration memory of ProASIC3 Flash-
based FPGAs. Once it is programmed, the Flash cell
configuration element of ProASIC3 FPGAs cannot be
altered by high-energy neutrons and is therefore
immune to them. Recoverable (or soft) errors occur in
the user data SRAM of all FPGA devices. These can easily
be mitigated by using error detection and correction
(EDAC) circuitry built into the FPGA fabric.
Low Power
Flash-based
ProASIC3
devices
exhibit
power
characteristics similar to an ASIC, making them an ideal
choice for power-sensitive applications. ProASIC3 devices
have only a very limited power-on current surge and no
high-current transition period, both of which occur on
many FPGAs.
ProASIC3
devices
also
have
low
dynamic
power
consumption to further maximize power savings.
Advanced Flash Technology
The ProASIC3 family offers many benefits, including
nonvolatility
and
reprogrammability
through
an
advanced Flash-based, 130-nm LVCMOS process with
seven layers of metal. Standard CMOS design techniques
are used to implement logic and control functions. The
combination of fine granularity, enhanced flexible
routing resources, and abundant Flash switches allows
for very high logic utilization without compromising
device routability or performance. Logic functions within
the device are interconnected through a four-level
routing hierarchy.
Advanced Architecture
The
proprietary
ProASIC3
architecture
provides
granularity comparable to standard-cell ASICs. The
ProASIC3
device
consists
of
five
distinct
and
programmable architectural features (Figure 1-1 and
FPGA VersaTiles
Dedicated FlashROM
Dedicated SRAM/FIFO memory1
Extensive CCCs and PLLs1
Advanced I/O structure
The FPGA core consists of a sea of VersaTiles. Each
VersaTile can be configured as a three-input logic
function, a D-flip-flop (with or without enable), or a
latch by programming the appropriate Flash switch
interconnections. The versatility of the ProASIC3 core tile
as either a three-input lookup table (LUT) equivalent or
as a D-flip-flop/latch with enable allows for efficient use
of the FPGA fabric. The VersaTile capability is unique to
the Actel ProASIC family of third-generation architecture
Flash FPGAs. VersaTiles are connected with any of the
four levels of routing hierarchy. Flash switches are
distributed
throughout
the
device
to
provide
nonvolatile, reconfigurable interconnect programming.
Maximum core utilization is possible for virtually any
design.
In addition, extensive on-chip programming circuitry
allows for rapid, single-voltage (3.3 V) programming of
ProASIC3 devices via an IEEE 1532 JTAG interface.
1. The A3P030 does not support PLL or SRAM.
相關(guān)PDF資料
PDF描述
M7A3P400-FPQ208 FPGA, 400000 GATES, 350 MHz, PQFP208
M7A3P400-FPQG208 FPGA, 400000 GATES, 350 MHz, PQFP208
M7A3P400-PQ208I FPGA, 400000 GATES, 350 MHz, PQFP208
M7A3P400-PQ208 FPGA, 400000 GATES, 350 MHz, PQFP208
M7A3P400-PQG208I FPGA, 400000 GATES, 350 MHz, PQFP208
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
M7A5 制造商:未知廠(chǎng)家 制造商全稱(chēng):未知廠(chǎng)家 功能描述:MEDIUM CURRENT SILICON RECTIFIERS
M7A9 制造商:未知廠(chǎng)家 制造商全稱(chēng):未知廠(chǎng)家 功能描述:MEDIUM CURRENT SILICON RECTIFIERS
M7AFS600-1FG256 制造商:Microsemi Corporation 功能描述:FPGA FUSION 600K GATES 1282.05MHZ 130NM 1.5V 256FBGA - Trays 制造商:Microsemi SOC Products Group 功能描述:FPGA FUSION 600K GATES 1282.05MHZ 130NM 1.5V 256FBGA - Trays
M7AFS600-1FG256ES 制造商:ACTEL 制造商全稱(chēng):Actel Corporation 功能描述:Actel Fusion Mixed-Signal FPGAs
M7AFS600-1FG256I 制造商:Microsemi Corporation 功能描述:FPGA FUSION 600K GATES 1282.05MHZ 130NM 1.5V 256FBGA - Trays 制造商:Microsemi SOC Products Group 功能描述:FPGA FUSION 600K GATES 1282.05MHZ 130NM 1.5V 256FBGA - Trays