參數(shù)資料
型號(hào): M7A3P400-FFG144
元件分類(lèi): FPGA
英文描述: FPGA, 400000 GATES, 350 MHz, PBGA144
封裝: 1 MM PITCH, FBGA-144
文件頁(yè)數(shù): 135/246頁(yè)
文件大?。?/td> 3010K
代理商: M7A3P400-FFG144
第1頁(yè)第2頁(yè)第3頁(yè)第4頁(yè)第5頁(yè)第6頁(yè)第7頁(yè)第8頁(yè)第9頁(yè)第10頁(yè)第11頁(yè)第12頁(yè)第13頁(yè)第14頁(yè)第15頁(yè)第16頁(yè)第17頁(yè)第18頁(yè)第19頁(yè)第20頁(yè)第21頁(yè)第22頁(yè)第23頁(yè)第24頁(yè)第25頁(yè)第26頁(yè)第27頁(yè)第28頁(yè)第29頁(yè)第30頁(yè)第31頁(yè)第32頁(yè)第33頁(yè)第34頁(yè)第35頁(yè)第36頁(yè)第37頁(yè)第38頁(yè)第39頁(yè)第40頁(yè)第41頁(yè)第42頁(yè)第43頁(yè)第44頁(yè)第45頁(yè)第46頁(yè)第47頁(yè)第48頁(yè)第49頁(yè)第50頁(yè)第51頁(yè)第52頁(yè)第53頁(yè)第54頁(yè)第55頁(yè)第56頁(yè)第57頁(yè)第58頁(yè)第59頁(yè)第60頁(yè)第61頁(yè)第62頁(yè)第63頁(yè)第64頁(yè)第65頁(yè)第66頁(yè)第67頁(yè)第68頁(yè)第69頁(yè)第70頁(yè)第71頁(yè)第72頁(yè)第73頁(yè)第74頁(yè)第75頁(yè)第76頁(yè)第77頁(yè)第78頁(yè)第79頁(yè)第80頁(yè)第81頁(yè)第82頁(yè)第83頁(yè)第84頁(yè)第85頁(yè)第86頁(yè)第87頁(yè)第88頁(yè)第89頁(yè)第90頁(yè)第91頁(yè)第92頁(yè)第93頁(yè)第94頁(yè)第95頁(yè)第96頁(yè)第97頁(yè)第98頁(yè)第99頁(yè)第100頁(yè)第101頁(yè)第102頁(yè)第103頁(yè)第104頁(yè)第105頁(yè)第106頁(yè)第107頁(yè)第108頁(yè)第109頁(yè)第110頁(yè)第111頁(yè)第112頁(yè)第113頁(yè)第114頁(yè)第115頁(yè)第116頁(yè)第117頁(yè)第118頁(yè)第119頁(yè)第120頁(yè)第121頁(yè)第122頁(yè)第123頁(yè)第124頁(yè)第125頁(yè)第126頁(yè)第127頁(yè)第128頁(yè)第129頁(yè)第130頁(yè)第131頁(yè)第132頁(yè)第133頁(yè)第134頁(yè)當(dāng)前第135頁(yè)第136頁(yè)第137頁(yè)第138頁(yè)第139頁(yè)第140頁(yè)第141頁(yè)第142頁(yè)第143頁(yè)第144頁(yè)第145頁(yè)第146頁(yè)第147頁(yè)第148頁(yè)第149頁(yè)第150頁(yè)第151頁(yè)第152頁(yè)第153頁(yè)第154頁(yè)第155頁(yè)第156頁(yè)第157頁(yè)第158頁(yè)第159頁(yè)第160頁(yè)第161頁(yè)第162頁(yè)第163頁(yè)第164頁(yè)第165頁(yè)第166頁(yè)第167頁(yè)第168頁(yè)第169頁(yè)第170頁(yè)第171頁(yè)第172頁(yè)第173頁(yè)第174頁(yè)第175頁(yè)第176頁(yè)第177頁(yè)第178頁(yè)第179頁(yè)第180頁(yè)第181頁(yè)第182頁(yè)第183頁(yè)第184頁(yè)第185頁(yè)第186頁(yè)第187頁(yè)第188頁(yè)第189頁(yè)第190頁(yè)第191頁(yè)第192頁(yè)第193頁(yè)第194頁(yè)第195頁(yè)第196頁(yè)第197頁(yè)第198頁(yè)第199頁(yè)第200頁(yè)第201頁(yè)第202頁(yè)第203頁(yè)第204頁(yè)第205頁(yè)第206頁(yè)第207頁(yè)第208頁(yè)第209頁(yè)第210頁(yè)第211頁(yè)第212頁(yè)第213頁(yè)第214頁(yè)第215頁(yè)第216頁(yè)第217頁(yè)第218頁(yè)第219頁(yè)第220頁(yè)第221頁(yè)第222頁(yè)第223頁(yè)第224頁(yè)第225頁(yè)第226頁(yè)第227頁(yè)第228頁(yè)第229頁(yè)第230頁(yè)第231頁(yè)第232頁(yè)第233頁(yè)第234頁(yè)第235頁(yè)第236頁(yè)第237頁(yè)第238頁(yè)第239頁(yè)第240頁(yè)第241頁(yè)第242頁(yè)第243頁(yè)第244頁(yè)第245頁(yè)第246頁(yè)
ProASIC3/E Flash Family FPGAs
2- 10
v2.1
Clock Resources (VersaNets)
ProASIC3 devices offer powerful and flexible control of
circuit timing through the use of analog circuitry. Each
chip has up to six CCCs. The west CCC also contains a
phase-locked loop (PLL) core, delay lines, a phase shifter
(0°, 90°, 180°, 270°), and clock multipliers/dividers. Each
CCC has all the circuitry needed for the selection and
interconnection of inputs to the VersaNet global
network. The east and west CCCs each have access to
three VersaNet global lines on each side of the chip (six
total lines). The CCCs at the four corners each have access
to three quadrant global lines in each quadrant of the
chip (except A3P030).
Advantages of the VersaNet Approach
One of the architectural benefits of ProASIC3 is the set of
powerful
and
low-delay
VersaNet
global
networks.
ProASIC3 offers six chip (main) global networks that are
distributed from the center of the FPGA array (Figure 2-9).
In addition, ProASIC3 devices have three regional globals in
each of the four chip quadrants. Each core VersaTile has
access to nine global network resources: three quadrant
and six chip (main) global networks, and a total of 18
globals on the device. Each of these networks contains
spines and ribs that reach all the VersaTiles in the quadrants
(Figure 2-10 on page 2-12). This flexible VersaNet global
network architecture allows users to map up to 144
different internal/external clocks in a ProASIC3 device.
Details on the VersaNet networks are given in Table 2-2 on
page 2-12. The flexible use of the ProASIC3 VersaNet global
network allows the designer to address several design
requirements. User applications that are clock-resource-
intensive can easily route external or gated internal clocks
using VersaNet global routing networks. Designers can also
drastically reduce delay penalties and minimize resource
usage by mapping critical, high-fanout nets to the VersaNet
global network.
In A3P030 devices, all six VersaNets are driven from three
southern I/Os, located toward the east and west sides.
These tiles can be configured to select a central I/O on
the respective side or an internal routed signal as the
input signal. The A3P030 does not support any clock
conditioning circuitry, nor does it contain the VersaNet
global network concept of top and bottom spines.
VersaNet Global Networks and Spine Access
The ProASIC3 architecture contains a total of 18
segmented
global
networks
that
can
access
the
VersaTiles, SRAM, and I/O tiles of the ProASIC3 device.
There are nine global network resources in each device
quadrant: three quadrant globals and six chip (main)
global networks. Each device has a total of 18 globals.
These VersaNet global networks offer fast, low-skew
routing resources for high-fanout nets, including clock
signals. In addition, these highly segmented global
networks offer users the flexibility to create low-skew
local
networks
using
spines
for
up
to
144internal/external clocks (in an A3P1000 device) or
other high-fanout nets in ProASIC3 devices. Optimal
usage of these low-skew networks can result in
significant improvement in design performance on
ProASIC3 devices.
The nine spines available in a vertical column reside in
global networks with two separate regions of scope: the
quadrant global network, which has three spines, and
the chip (main) global network, which has six spines.
Note that there are three quadrant spines in each
quadrant of the device (except for A3P030). There are
four quadrant global network regions per device
The spines are the vertical branches of the global
network tree, shown in Figure 2-11 on page 2-13. Each
spine in a vertical column of a chip (main) global
network is further divided into two equal-length spine
segments: one in the top and one in the bottom half of
the die.
Each spine and its associated ribs cover a certain area of
the ProASIC3 device (the "scope" of the spine; see
Figure 2-9 on page 2-11). Each spine is accessed by the
dedicated global network MUX tree architecture, which
defines how a particular spine is driven—either by the
signal on the global network from a CCC, for example, or
by another net defined by the user (Figure 2-12 on page
2-14). Quadrant spines can be driven from user I/Os on
the north and south sides of the die. The ability to drive
spines in the quadrant global networks can have a
significant effect on system performance for high-fanout
inputs to a design.
Details of the chip (main) global network spine-selection
MUX are presented in Figure 2-12 on page 2-14. The
spine drivers for each spine are located in the middle of
the die.
Quadrant spines are driven from a north or south rib.
Access to the top and bottom ribs is from the corner CCC
or from the I/Os on the north and south sides of the
device.
For details on using spines in ProASIC3 devices, see the
Actel application note Using Global Resources in Actel
相關(guān)PDF資料
PDF描述
M7A3P400-FFG256 FPGA, 400000 GATES, 350 MHz, PBGA256
M7A3P400-FFG484 FPGA, 400000 GATES, 350 MHz, PBGA484
M7A3P400-FFGG144 FPGA, 400000 GATES, 350 MHz, PBGA144
M7A3P400-FFGG256 FPGA, 400000 GATES, 350 MHz, PBGA256
M7A3P400-FFGG484 FPGA, 400000 GATES, 350 MHz, PBGA484
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
M7A5 制造商:未知廠家 制造商全稱:未知廠家 功能描述:MEDIUM CURRENT SILICON RECTIFIERS
M7A9 制造商:未知廠家 制造商全稱:未知廠家 功能描述:MEDIUM CURRENT SILICON RECTIFIERS
M7AFS600-1FG256 制造商:Microsemi Corporation 功能描述:FPGA FUSION 600K GATES 1282.05MHZ 130NM 1.5V 256FBGA - Trays 制造商:Microsemi SOC Products Group 功能描述:FPGA FUSION 600K GATES 1282.05MHZ 130NM 1.5V 256FBGA - Trays
M7AFS600-1FG256ES 制造商:ACTEL 制造商全稱:Actel Corporation 功能描述:Actel Fusion Mixed-Signal FPGAs
M7AFS600-1FG256I 制造商:Microsemi Corporation 功能描述:FPGA FUSION 600K GATES 1282.05MHZ 130NM 1.5V 256FBGA - Trays 制造商:Microsemi SOC Products Group 功能描述:FPGA FUSION 600K GATES 1282.05MHZ 130NM 1.5V 256FBGA - Trays