Revision 13 1-3 Reduced Cost of Ownership Advantages to the designer extend beyond low unit cost, performance," />
參數(shù)資料
型號: M1AGLE3000V5-FGG484I
廠商: Microsemi SoC
文件頁數(shù): 156/166頁
文件大?。?/td> 0K
描述: IC FPGA 1KB FLASH 3M 484-FBGA
標(biāo)準(zhǔn)包裝: 60
系列: IGLOOe
邏輯元件/單元數(shù): 75264
RAM 位總計(jì): 516096
輸入/輸出數(shù): 341
門數(shù): 3000000
電源電壓: 1.425 V ~ 1.575 V
安裝類型: 表面貼裝
工作溫度: -40°C ~ 85°C
封裝/外殼: 484-BGA
供應(yīng)商設(shè)備封裝: 484-FPBGA(23x23)
IGLOOe Low Power Flash FPGAs
Revision 13
1-3
Reduced Cost of Ownership
Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAM-
based FPGAs, Flash-based IGLOOe devices allow all functionality to be Instant On; no external boot
PROM is required. On-board security mechanisms prevent access to all the programming information
and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system
reprogramming to support future design iterations and field upgrades with confidence that valuable
intellectual property cannot be compromised or copied. Secure ISP can be performed using the industry-
standard AES algorithm. The IGLOOe family device architecture mitigates the need for ASIC migration at
higher user volumes. This makes the IGLOOe family a cost-effective ASIC replacement solution,
especially for applications in the consumer, networking/communications, computing, and avionics
markets.
Firm-Error Immunity
Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike
a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the
configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These
errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a
complete system failure. Firm errors do not exist in the configuration memory of IGLOOe flash-based
FPGAs. Once it is programmed, the flash cell configuration element of IGLOOe FPGAs cannot be altered
by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in the user
data SRAM of all FPGA devices. These can easily be mitigated by using error detection and correction
(EDAC) circuitry built into the FPGA fabric.
Advanced Flash Technology
The IGLOOe family offers many benefits, including nonvolatility and reprogrammability, through an
advanced flash-based, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design
techniques are used to implement logic and control functions. The combination of fine granularity,
enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization
without compromising device routability or performance. Logic functions within the device are
interconnected through a four-level routing hierarchy.
IGLOOe family FPGAs utilize design and process techniques to minimize power consumption in all
modes of operation.
Advanced Architecture
The proprietary IGLOOe architecture provides granularity comparable to standard-cell ASICs. The
IGLOOe device consists of five distinct and programmable architectural features (Figure 1-1 on page 4):
Flash*Freeze technology
FPGA VersaTiles
Dedicated FlashROM
Dedicated SRAM/FIFO memory
Extensive CCCs and PLLs
Pro I/O structure
The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic
function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch
interconnections. The versatility of the IGLOOe core tile as either a three-input lookup table (LUT)
equivalent or a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile
capability is unique to the Microsemi ProASIC family of third-generation-architecture flash FPGAs.
VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed
throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core
utilization is possible for virtually any design.
相關(guān)PDF資料
PDF描述
M1AGLE3000V5-FG484I IC FPGA 1KB FLASH 3M 484-FBGA
AGLE3000V5-FGG484I IC FPGA 1KB FLASH 3M 484-FBGA
AX2000-2FG1152I IC FPGA AXCELERATOR 2M 1152-FBGA
EP1SGX25DF672C6N IC STRATIX GX FPGA 25K 672-FBGA
A1280A-1PQG160I IC FPGA 8K GATES 160-PQFP IND
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
M1AGLE3000V5-FGG896 功能描述:IC FPGA 1KB FLASH 3M 896-FBGA RoHS:是 類別:集成電路 (IC) >> 嵌入式 - FPGA(現(xiàn)場可編程門陣列) 系列:IGLOOe 標(biāo)準(zhǔn)包裝:1 系列:ProASICPLUS LAB/CLB數(shù):- 邏輯元件/單元數(shù):- RAM 位總計(jì):129024 輸入/輸出數(shù):248 門數(shù):600000 電源電壓:2.3 V ~ 2.7 V 安裝類型:表面貼裝 工作溫度:- 封裝/外殼:352-BFCQFP,帶拉桿 供應(yīng)商設(shè)備封裝:352-CQFP(75x75)
M1AGLE3000V5-FGG896ES 制造商:ACTEL 制造商全稱:Actel Corporation 功能描述:IGLOOe Low-Power Flash FPGAs with Flash Freeze Technology
M1AGLE3000V5-FGG896I 功能描述:IC FPGA 1KB FLASH 3M 896-FBGA RoHS:是 類別:集成電路 (IC) >> 嵌入式 - FPGA(現(xiàn)場可編程門陣列) 系列:IGLOOe 標(biāo)準(zhǔn)包裝:1 系列:ProASICPLUS LAB/CLB數(shù):- 邏輯元件/單元數(shù):- RAM 位總計(jì):129024 輸入/輸出數(shù):248 門數(shù):600000 電源電壓:2.3 V ~ 2.7 V 安裝類型:表面貼裝 工作溫度:- 封裝/外殼:352-BFCQFP,帶拉桿 供應(yīng)商設(shè)備封裝:352-CQFP(75x75)
M1AGLE3000V5-FGG896PP 制造商:ACTEL 制造商全稱:Actel Corporation 功能描述:IGLOOe Low-Power Flash FPGAs with Flash Freeze Technology
M1ARM 24-240VAC/DC 60MINS 制造商:BROYCE CONTROL 功能描述:TIMER DUAL FUNCTION 60MINS 制造商:BROYCE CONTROL 功能描述:TIMER, DUAL FUNCTION, 60MINS 制造商:BROYCE CONTROL 功能描述:TIMER, DUAL FUNCTION, 60MINS, Contact Configuration:SPDT, Time Min:2min, Time Ma 制造商:BROYCE CONTROL 功能描述:TIMER, DUAL FUNCTION, 60MINS, Contact Configuration:SPDT, Time Min:2min, Time Max:60min, Timing Adjustment:Knob, Relay Mounting:DIN Rail, Contact Current AC Max:8A, Contact Current DC Max:8A, Contact Voltage AC Max:250V, Contact , RoHS Compliant: Yes