參數(shù)資料
型號(hào): LX1677CLQ
英文描述: PWM Controllers
中文描述: PWM控制器
文件頁數(shù): 12/21頁
文件大小: 554K
代理商: LX1677CLQ
Microsemi
Integrated Products, Power Management
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, Fax: 714-893-2570
Page 12
Copyright
2000
Rev. 0.5i, 2002-07-17
W
M
.
C
LX1671
Multiple Output LoadSHARE PWM
P
RELIMINARY
I N T E G R A T E D P R O D U C T S
THEORY OF OPERATION
(CONTINUED)
B
I
-P
HASE
, L
OAD
SHARE (ESR M
ETHOD
)
The first method is to change the ratio of the inductors
equivalent series resistance, (ESR). As can be seen in the
previous example, if the offset error is zero and the ESR of the
two inductors are identical, then the two inductor currents will be
identical. To change the ratio of current between the two
inductors, the value of the inductor’s ESR can be changed to
allow more current to flow through one inductor than the other.
The inductor with the lower ESR value will have the larger
current. The inductor currents are directly proportional to the
ratio of the inductor’s ESR value.
The following circuit description shows how to select the
inductor ESR for each phase where a different amount of power
is taken from two different input power supplies. A typical setup
will have a +5V power supply connected to the phase 1 half
bridge driver and a +3.3V power supply connected to the phase 2
half bridge driver. The combined power output for this core
voltage is 18W (+1.5V @ 12A). For this example the +5V power
supply will supply 7W and the +3.3V power supply will supply
the other 11W. 7W @ 1.5V is a 4.67A current through the phase
1 inductor. 11W @ 1.5V is a 7.33A current through the phase 2
inductor. The ratio of inductor ESR is inversely proportional to
2
2
ESR
the power level split.
1
1
ESR
=
The higher current inductor will have the lower ESR value. If the
ESR of the phase 1 inductor is selected as 10m
, then the ESR
value of the phase 2 inductor is calculated as:
m
4
m
10
A
33
.
A
67
.
=
×
Depending on the required accuracy of this power sharing;
inductors can be chosen from standard vendor tables with an ESR
ratio close to the required values. Inductors can also be designed
for a given application so that there is the least amount of
compromise in the inductor’s performance.
1.5V @ 12A
7.33A
18W
6.4m
4.67A
10m
1.5V +
46.7mV
L1
L2
+5V @ 7W
+3.3V @ 11W
Figure 7
–LoadSHARE Using Inductor ESR
B
I
-P
HASE
, L
OAD
SHARE (F
EEDBACK
D
IVIDER
M
ETHOD
)
Sometimes it is desirable to use the same inductor in both
phases while having a much larger current in one phase versus the
other. A simple resistor divider can be used on the input side of
the Low Pass Filter that is taken off of the switching side of the
inductors. If the Phase 2 current is to be larger than the current in
Phase 1; the resistor divider is placed in the feedback path before
the Low Pass Filter that is connected to the Phase 2 inductor. If the
Phase 2 current needs to be less than the current in Phase 1; the
resistor divider is then placed in the feedback path before the Low
Pass Filter that is connected to the Phase 1 inductor.
As in Figure 7, the millivolts of DC offset created by the
resistor divider network in the feedback path, appears as a voltage
generator between the ESR of the two inductors.
A divider in the feedback path from Phase 2 will cause the
voltage generator to be positive at Phase 2. With a divider in the
feedback path of Phase 1 the voltage generator becomes positive at
Phase 1. The Phase with the positive side of the voltage generator
will have the larger current. Systems that operate continuously
above a 30% power level can use this method, a down side is that
the current difference between the two inductors still flows during
a no load condition.
This produces a low efficiency condition during a no load or
light load state, this method should not be used if a wide range of
output power is required.
The following description and Figure 8 show how to determine
the value of the resistor divider network required to generate the
offset voltage necessary to produce the different current ratio in the
two output inductors. The power sharing ratio is the same as that
of Figure 7. The Offset Voltage Generator is symbolic for the DC
voltage offset between Phase 1 & 2. This voltage is generated by
small changes in the duty cycle of Phase 2. The output of the LPF
is a DC voltage proportional to the duty cycle on its input. A small
amount of attenuation by a resistor divider before the LPF of Phase
2 will cause the duty cycle of Phase 2 to increase to produce the
added offset at V2. The high DC gain of the error amplifier will
force LPF2 to always be equal to LPF1. The following
calculations determine the value of the resistor divider necessary to
satisfy this example.
A
P
P
L
I
C
A
T
I
O
N
S
相關(guān)PDF資料
PDF描述
LX1677CPW PWM Controllers
LX1684CDT Analog IC
LX1686CPWT Ballast/Backlight Controller/Driver
LX1686IPW CCFL Backlight Controller IC
LX1710EVALKIT AudioMAX Products
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
LX1677CPW 功能描述:IC CTRLR VRM PS 2PHASE 38TSSOP RoHS:是 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - 專用型 系列:- 產(chǎn)品培訓(xùn)模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標(biāo)準(zhǔn)包裝:2,000 系列:- 應(yīng)用:電源,ICERA E400,E450 輸入電壓:4.1 V ~ 5.5 V 輸出數(shù):10 輸出電壓:可編程 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:42-WFBGA,WLCSP 供應(yīng)商設(shè)備封裝:42-WLP 包裝:帶卷 (TR)
LX1681 制造商:MICROSEMI 制造商全稱:Microsemi Corporation 功能描述:VOLTAGE - MODE PWM CONTROLLERS
LX1681_05 制造商:MICROSEMI 制造商全稱:Microsemi Corporation 功能描述:Voltage-Mode PWM Controllers
LX1681CDM 功能描述:IC REG CTRLR DIVIDER PWM 8-SOIC RoHS:是 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 切換控制器 系列:- 標(biāo)準(zhǔn)包裝:4,000 系列:- PWM 型:電壓模式 輸出數(shù):1 頻率 - 最大:1.5MHz 占空比:66.7% 電源電壓:4.75 V ~ 5.25 V 降壓:是 升壓:無 回掃:無 反相:無 倍增器:無 除法器:無 Cuk:無 隔離:無 工作溫度:-40°C ~ 85°C 封裝/外殼:40-VFQFN 裸露焊盤 包裝:帶卷 (TR)
LX1681CDMT 制造商:MICROSEMI 制造商全稱:Microsemi Corporation 功能描述:Voltage-Mode SMPS Controller