AIN + A
參數(shù)資料
型號(hào): LTC2288CUP#PBF
廠商: Linear Technology
文件頁(yè)數(shù): 9/28頁(yè)
文件大?。?/td> 0K
描述: IC ADC DUAL 10BIT 65MSPS 64QFN
標(biāo)準(zhǔn)包裝: 40
位數(shù): 10
采樣率(每秒): 65M
數(shù)據(jù)接口: 并聯(lián)
轉(zhuǎn)換器數(shù)目: 2
功率耗散(最大): 450mW
電壓電源: 單電源
工作溫度: 0°C ~ 70°C
安裝類(lèi)型: 表面貼裝
封裝/外殼: 64-WFQFN 裸露焊盤(pán)
供應(yīng)商設(shè)備封裝: 64-QFN(9x9)
包裝: 管件
輸入數(shù)目和類(lèi)型: 2 個(gè)單端,雙極; 2 個(gè)差分, 雙極
產(chǎn)品目錄頁(yè)面: 1349 (CN2011-ZH PDF)
LTC2288/LTC2287/LTC2286
17
228876fa
25
25
25
25
0.1
F
AIN
+
AIN
12pF
2.2
F
VCM
LTC2288
LTC2287
LTC2286
ANALOG
INPUT
0.1
FT1
1:1
T1 = MA/COM ETC1-1T
RESISTORS, CAPACITORS
ARE 0402 PACKAGE SIZE
228876 F03
capacitors to acquire a new sample. Since the sampling
capacitors still hold the previous sample, a charging glitch
proportional to the change in voltage between samples will
be seen at this time. If the change between the last sample
and the new sample is small, the charging glitch seen at
the input will be small. If the input change is large, such as
the change seen with input frequencies near Nyquist, then
a larger charging glitch will be seen.
Single-Ended Input
For cost sensitive applications, the analog inputs can be
driven single-ended. With a single-ended input the har-
monic distortion and INL will degrade, but the SNR and
DNL will remain unchanged. For a single-ended input, AIN+
should be driven with the input signal and AIN– should be
connected to 1.5V or VCM.
Common Mode Bias
For optimal performance the analog inputs should be
driven differentially. Each input should swing
±0.5V for
the 2V range or
±0.25V for the 1V range, around a
common mode voltage of 1.5V. The VCM output pin may
be used to provide the common mode bias level. VCM can
be tied directly to the center tap of a transformer to set the
DC input level or as a reference level to an op amp
differential driver circuit. The VCM pin must be bypassed to
ground close to the ADC with a 2.2
F or greater capacitor.
Input Drive Impedance
As with all high performance, high speed ADCs, the
dynamic performance of the LTC2288/LTC2287/LTC2286
can be influenced by the input drive circuitry, particularly
the second and third harmonics. Source impedance and
reactance can influence SFDR. At the falling edge of CLK,
the sample-and-hold circuit will connect the 4pF sampling
capacitor to the input pin and start the sampling period.
The sampling period ends when CLK rises, holding the
sampled input on the sampling capacitor. Ideally the input
circuitry should be fast enough to fully charge
the sampling capacitor during the sampling period
1/(2FENCODE); however, this is not always possible and the
incomplete settling may degrade the SFDR. The sampling
APPLICATIO S I FOR ATIO
WU
UU
glitch has been designed to be as linear as possible to
minimize the effects of incomplete settling.
For the best performance, it is recommended to have a
source impedance of 100
or less for each input. The
source impedance should be matched for the differential
inputs. Poor matching will result in higher even order
harmonics, especially the second.
Input Drive Circuits
Figure 3 shows the LTC2288/LTC2287/LTC2286 being
driven by an RF transformer with a center tapped second-
ary. The secondary center tap is DC biased with VCM,
setting the ADC input signal at its optimum DC level.
Terminating on the transformer secondary is desirable, as
this provides a common mode path for charging glitches
caused by the sample and hold. Figure 3 shows a 1:1 turns
ratio transformer. Other turns ratios can be used if the
source impedance seen by the ADC does not exceed 100
for each ADC input. A disadvantage of using a transformer
is the loss of low frequency response. Most small RF
transformers have poor performance at frequencies be-
low 1MHz.
Figure 3. Single-Ended to Differential Conversion
Using a Transformer
Figure 4 demonstrates the use of a differential amplifier to
convert a single ended input signal into a differential input
signal. The advantage of this method is that it provides low
frequency input response; however, the limited gain band-
width of most op amps will limit the SFDR at high input
frequencies.
相關(guān)PDF資料
PDF描述
EL9112ILZ IC RCVR/EQLZR DIFF 150MHZ 28-QFN
VE-J7P-MY-F1 CONVERTER MOD DC/DC 13.8V 50W
CS5364-DQZ IC ADC 4CH 114DB 216KHZ 48-LQFP
VE-J7N-MY-F3 CONVERTER MOD DC/DC 18.5V 50W
AD7859ASZ IC ADC 12BIT 8CH LP 44-MQFP
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
LTC2288IUP 制造商:Linear Technology 功能描述:ADC Dual Pipelined 65Msps 10-bit Parallel 64-Pin QFN EP
LTC2288IUP#PBF 功能描述:IC ADC DUAL 10BIT 65MSPS 64QFN RoHS:是 類(lèi)別:集成電路 (IC) >> 數(shù)據(jù)采集 - 模數(shù)轉(zhuǎn)換器 系列:- 標(biāo)準(zhǔn)包裝:1,000 系列:- 位數(shù):12 采樣率(每秒):300k 數(shù)據(jù)接口:并聯(lián) 轉(zhuǎn)換器數(shù)目:1 功率耗散(最大):75mW 電壓電源:單電源 工作溫度:0°C ~ 70°C 安裝類(lèi)型:表面貼裝 封裝/外殼:24-SOIC(0.295",7.50mm 寬) 供應(yīng)商設(shè)備封裝:24-SOIC 包裝:帶卷 (TR) 輸入數(shù)目和類(lèi)型:1 個(gè)單端,單極;1 個(gè)單端,雙極
LTC2288IUP#TRPBF 功能描述:IC ADC DUAL 10BIT 65MSPS 64QFN RoHS:是 類(lèi)別:集成電路 (IC) >> 數(shù)據(jù)采集 - 模數(shù)轉(zhuǎn)換器 系列:- 標(biāo)準(zhǔn)包裝:1,000 系列:- 位數(shù):12 采樣率(每秒):300k 數(shù)據(jù)接口:并聯(lián) 轉(zhuǎn)換器數(shù)目:1 功率耗散(最大):75mW 電壓電源:單電源 工作溫度:0°C ~ 70°C 安裝類(lèi)型:表面貼裝 封裝/外殼:24-SOIC(0.295",7.50mm 寬) 供應(yīng)商設(shè)備封裝:24-SOIC 包裝:帶卷 (TR) 輸入數(shù)目和類(lèi)型:1 個(gè)單端,單極;1 個(gè)單端,雙極
LTC2288UP 制造商:LINER 制造商全稱:Linear Technology 功能描述:Dual 10-Bit, 65/40/25Msps Low Noise 3V ADCs
LTC2289 制造商:LINER 制造商全稱:Linear Technology 功能描述:Dual 10-Bit, 80Msps Low Noise 3V ADC