參數(shù)資料
型號(hào): LTC1148HVIS-5
廠商: LINEAR TECHNOLOGY CORP
元件分類: 穩(wěn)壓器
英文描述: RADIATION HARDENED HIGH EFFICIENCY, 5 AMP SWITCHING REGULATORS
中文描述: SWITCHING CONTROLLER, 250 kHz SWITCHING FREQ-MAX, PDSO14
封裝: 0.150 INCH, PLASTIC, SOP-14
文件頁數(shù): 7/20頁
文件大小: 250K
代理商: LTC1148HVIS-5
7
LTC1148
LTC1148-3.3/LTC1148-5
114835fd
OPERATIOU
The LTC1148 series uses a current mode, constant off-
time architecture to synchronously switch an external
pair of complementary power MOSFETs. Operating fre-
quency is set by an external capacitor at the timing
capacitor Pin 4.
The output voltage is sensed by an internal voltage
divider connected to SENSE
Pin 7 (LTC1148-3.3 and
LTC1148-5) or external divider returned to V
FB
Pin 9
(LTC1148). A voltage comparator V, and a gain block G,
compare the divided output voltage with a reference
voltage of 1.25V. To optimize efficiency, the LTC1148
series automatically switches between two modes of
operation, burst and continuous. The voltage compara-
tor is the primary control element when the device is in
Burst Mode
operation, while the gain block controls the
output voltage in continuous mode.
During the switch “ON” cycle in continuous mode, current
comparator C monitors the voltage between Pins 7 and 8
connected across an external shunt in series with the
inductor. When the voltage across the shunt reaches its
threshold value, the P-drive output is switched to V
IN
,
turning off the P-channel MOSFET. The timing capacitor
connected to Pin 4 is now allowed to discharge at a rate
determined by the off-time controller. The discharge cur-
rent is made proportional to the output voltage (measured
by Pin 7) to model the inductor current, which decays at
a rate which is also proportional to the output voltage.
While the timing capacitor is discharging, the N-drive
output goes to V
IN
, turning on the N-channel MOSFET.
When the voltage on the timing capacitor has discharged
past V
TH1
, comparator T trips, setting the flip-
flop. This
causes the N-drive output to go low (turning off the N-
channel MOSFET) and the P-drive output to also go low
(turning the P-channel MOSFET back on). The cycle
then repeats.
As the load current increases, the output voltage de-
creases slightly. This causes the output of the gain stage
(Pin 6) to increase the current comparator threshold, thus
tracking the load current.
The sequence of events for Burst Mode
operation is very
similar to continuous operation with the cycle interrupted
by the voltage comparator. When the output voltage is at
or above the desired regulated value, the P-channel MOSFET
is held off by comparator V and the timing capacitor
continues to discharge below V
TH1
. When the timing
capacitor discharges past V
TH2
, voltage comparator S
trips, causing the internal sleep line to go low and the N-
channel MOSFET to turn off.
The circuit now enters sleep mode with both power
MOSFETs turned off. In sleep mode, a majority of the
circuitry is turned off, dropping the quiescent current
from 1.6mA to 160
μ
A. The load current is now being
supplied from the output capacitor. When the output
voltage has dropped by the amount of hysteresis in
comparator V, the P-channel MOSFET is again turned on
and the process repeats.
To avoid the operation of the current loop interfering with
Burst Mode
operation, a built-in offset (V
OS
) is incorpo-
rated in the gain stage. This prevents the current compara-
tor threshold from increasing until the output voltage has
dropped below a minimum threshold.
To prevent both the external MOSFETs from ever being
turned on at the same time, feedback is incorporated to
sense the state of the driver output pins. Before the
N-drive output can go high, the P-drive output must also
be high. Likewise, the P-drive output is prevented from
going low while the N-drive output is high.
Using constant off-time architecture, the operating fre-
quency is a function of the input voltage. To minimize the
frequency variation as dropout is approached, the off-time
controller increases the discharge current as V
IN
drops
below V
OUT
+ 1.5V. In dropout the P-channel MOSFET is
turned on continuously (100% duty cycle), providing
extremely low dropout operation.
相關(guān)PDF資料
PDF描述
LTC1151CSW Dual 【15V Zero-Drift Operational Amplifier
LTC1151 Dual ±15V Zero-Drift Operational Amplifier(±15V,雙路,零漂移運(yùn)算放大器)
LTC1153 Auto-Reset Electronic Circuit Breaker
LTC1153C Auto-Reset Electronic Circuit Breaker
LTC1153CN8 Octal Bus Transceivers With 3-State Outputs 20-SOIC 0 to 70
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
LTC1148HVIS-5#PBF 功能描述:IC REG CTRLR BUCK PWM CM 14-SOIC RoHS:是 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 切換控制器 系列:- 標(biāo)準(zhǔn)包裝:4,500 系列:PowerWise® PWM 型:控制器 輸出數(shù):1 頻率 - 最大:1MHz 占空比:95% 電源電壓:2.8 V ~ 5.5 V 降壓:是 升壓:無 回掃:無 反相:無 倍增器:無 除法器:無 Cuk:無 隔離:無 工作溫度:-40°C ~ 125°C 封裝/外殼:6-WDFN 裸露焊盤 包裝:帶卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名稱:LM1771SSDX
LTC1148HVIS-5#TR 功能描述:IC REG CTRLR BUCK PWM CM 14-SOIC RoHS:否 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 切換控制器 系列:- 標(biāo)準(zhǔn)包裝:4,500 系列:PowerWise® PWM 型:控制器 輸出數(shù):1 頻率 - 最大:1MHz 占空比:95% 電源電壓:2.8 V ~ 5.5 V 降壓:是 升壓:無 回掃:無 反相:無 倍增器:無 除法器:無 Cuk:無 隔離:無 工作溫度:-40°C ~ 125°C 封裝/外殼:6-WDFN 裸露焊盤 包裝:帶卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名稱:LM1771SSDX
LTC1148HVIS-5#TRPBF 功能描述:IC REG CTRLR BUCK PWM CM 14-SOIC RoHS:是 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 切換控制器 系列:- 標(biāo)準(zhǔn)包裝:4,500 系列:PowerWise® PWM 型:控制器 輸出數(shù):1 頻率 - 最大:1MHz 占空比:95% 電源電壓:2.8 V ~ 5.5 V 降壓:是 升壓:無 回掃:無 反相:無 倍增器:無 除法器:無 Cuk:無 隔離:無 工作溫度:-40°C ~ 125°C 封裝/外殼:6-WDFN 裸露焊盤 包裝:帶卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名稱:LM1771SSDX
LTC1148L 制造商:LINER 制造商全稱:Linear Technology 功能描述:High Efficiency Synchronous Step-Down Switching Regulators
LTC1148LCS 功能描述:IC REG CTRLR BUCK PWM CM 14-SOIC RoHS:否 類別:集成電路 (IC) >> PMIC - 穩(wěn)壓器 - DC DC 切換控制器 系列:- 標(biāo)準(zhǔn)包裝:4,500 系列:PowerWise® PWM 型:控制器 輸出數(shù):1 頻率 - 最大:1MHz 占空比:95% 電源電壓:2.8 V ~ 5.5 V 降壓:是 升壓:無 回掃:無 反相:無 倍增器:無 除法器:無 Cuk:無 隔離:無 工作溫度:-40°C ~ 125°C 封裝/外殼:6-WDFN 裸露焊盤 包裝:帶卷 (TR) 配用:LM1771EVAL-ND - BOARD EVALUATION LM1771 其它名稱:LM1771SSDX