參數(shù)資料
型號: ISL6610CRZ
廠商: INTERSIL CORP
元件分類: 功率晶體管
英文描述: Dual Synchronous Rectified MOSFET Drivers
中文描述: 4 A BUF OR INV BASED MOSFET DRIVER, PQCC16
封裝: 4 X 4 MM, ROHS COMPLIANT, PLASTIC, MO-220VGGC, QFN-16
文件頁數(shù): 7/11頁
文件大?。?/td> 279K
代理商: ISL6610CRZ
7
FN6395.0
November 22, 2006
the bootstrap capacitor when exposed to excessively large
negative voltage swing at the PHASE node. Typically, such
large negative excursions occur in high current applications
that use D
2
-PAK and D-PAK MOSFETs or excessive layout
parasitic inductance. The following equation helps select a
proper bootstrap capacitor size:
where Q
G1
is the amount of gate charge per upper MOSFET
at V
GS1
gate-source voltage and N
Q1
is the number of
control MOSFETs. The
Δ
V
BOOT_CAP
term is defined as the
allowable droop in the rail of the upper gate drive.
As an example, suppose two HAT2168 FETs are chosen as
the upper MOSFETs. The gate charge, Q
G
, from the data
sheet is 12nC at 5V (V
GS
) gate-source voltage. Then the
Q
GATE
is calculated to be 26.4nC at 5.5V PVCC level. We
will assume a 100mV droop in drive voltage over the PWM
cycle. We find that a bootstrap capacitance of at least
0.264
μ
F is required. The next larger standard value
capacitance is 0.33μF. A good quality ceramic capacitor is
recommended.
Power Dissipation
Package power dissipation is mainly a function of the
switching frequency (F
SW
), the output drive impedance, the
external gate resistance, and the selected MOSFET’s
internal gate resistance and total gate charge. Calculating
the power dissipation in the driver for a desired application is
critical to ensure safe operation. Exceeding the maximum
allowable power dissipation level will push the IC beyond the
maximum recommended operating junction temperature of
+125°C. The maximum allowable IC power dissipation for
the SO14 package is approximately 1W at room
temperature, while the power dissipation capacity in the
QFN packages, with an exposed heat escape pad, is around
2W. See Layout Considerations paragraph for thermal
transfer improvement suggestions. When designing the
driver into an application, it is recommended that the
following calculation is used to ensure safe operation at the
desired frequency for the selected MOSFETs. The total gate
drive power losses due to the gate charge of MOSFETs and
the driver’s internal circuitry and their corresponding average
driver current can be estimated with Equations 2 and 3,
respectively,
where the gate charge (Q
G1
and Q
G2
) is defined at a
particular gate to source voltage (V
GS1
and V
GS2
) in the
corresponding MOSFET datasheet; I
Q
is the driver’s total
quiescent current with no load at both drive outputs and can
be negligible; N
Q1
and N
Q2
are number of upper and lower
MOSFETs, respectively. The factor 2 is the number of active
channels. The I
Q
V
CC
product is the quiescent power of the
driver without capacitive load and is typically negligible.
The total gate drive power losses are dissipated among the
resistive components along the transition path. The drive
resistance dissipates a portion of the total gate drive power
losses, the rest will be dissipated by the external gate
resistors (R
G1
and R
G2
, should be a short to avoid
interfering with the operation shoot-through protection
circuitry) and the internal gate resistors (R
GI1
and R
GI2
) of
MOSFETs. Figures 3 and 4 show the typical upper and lower
gate drives turn-on transition path. The power dissipation on
the driver can be roughly estimated as:
C
BOOT_CAP
Q
BOOT_CAP
-------------------------------------
Q
GATE
Q
-----------------------------------
PVCC
GS1
N
Q1
=
(EQ. 1)
50nC
20nC
FIGURE 2. BOOTSTRAP CAPACITANCE vs BOOT RIPPLE
VOLTAGE
Δ
V
BOOT
(V)
C
B
(
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0.3
0.0
0.1
0.2
0.4
0.5
0.6
0.9
0.7
0.8
1.0
Q
GATE
= 100nC
1.8
2.0
(EQ. 2)
P
Qg_Q1
Q
--------------------------------------
PVCC
2
GS1
F
SW
N
Q1
=
P
Qg_Q2
Q
--------------------------------------
PVCC
2
GS2
F
SW
N
Q2
=
P
Qg_TOT
2
P
Qg_Q1
P
Qg_Q2
+
(
)
I
Q
VCC
+
=
(EQ. 3)
I
DR
2
Q
-----------------------------
N
GS1
Q
-----------------------------
N
GS2
+
F
SW
I
Q
+
=
(EQ. 4)
P
DR_UP
R
HI1
R
EXT1
--------------+
R
LO1
R
EXT1
---------------+
+
P
---------------------
=
P
DR_LOW
R
HI2
R
EXT2
---------------+
R
LO2
R
EXT2
-----------------+
+
P
---------------------
=
R
EXT2
R
G1
R
Q1
-------------
+
=
R
EXT2
R
G2
R
Q2
-------------
+
=
P
DR
2
P
DR_UP
P
DR_LOW
+
(
)
I
Q
VCC
+
=
ISL6610, ISL6610A
相關(guān)PDF資料
PDF描述
ISL6610IBZ Dual Synchronous Rectified MOSFET Drivers
ISL6610IRZ Dual Synchronous Rectified MOSFET Drivers
ISL6613A Advanced Synchronous Rectified Buck MOSFET Drivers with Pre-POR OVP(帶Pre-POR過壓保護的高級同步整流降壓MOSFET驅(qū)動器)
ISL6613B Advanced Synchronous Rectified Buck MOSFET Drivers with Pre-POR OVP
ISL6614A Dual Advanced Synchronous Rectified Buck MOSFET Drivers with Pre-POR OVP(帶Pre-POR過壓保護的雙高級同步整流降壓MOSFET驅(qū)動器)
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
ISL6610CRZ-T 功能描述:IC MOSFET DRVR DUAL SYNC 16-QFN RoHS:是 類別:集成電路 (IC) >> PMIC - MOSFET,電橋驅(qū)動器 - 外部開關(guān) 系列:- 標準包裝:6,000 系列:*
ISL6610IBZ 功能描述:IC MOSFET DRVR DUAL SYNC 14-SOIC RoHS:是 類別:集成電路 (IC) >> PMIC - MOSFET,電橋驅(qū)動器 - 外部開關(guān) 系列:- 標準包裝:50 系列:- 配置:高端 輸入類型:非反相 延遲時間:200ns 電流 - 峰:250mA 配置數(shù):1 輸出數(shù):1 高端電壓 - 最大(自引導(dǎo)啟動):600V 電源電壓:12 V ~ 20 V 工作溫度:-40°C ~ 125°C 安裝類型:通孔 封裝/外殼:8-DIP(0.300",7.62mm) 供應(yīng)商設(shè)備封裝:8-DIP 包裝:管件 其它名稱:*IR2127
ISL6610IBZ-T 功能描述:IC MOSFET DRVR DUAL SYNC 14-SOIC RoHS:是 類別:集成電路 (IC) >> PMIC - MOSFET,電橋驅(qū)動器 - 外部開關(guān) 系列:- 標準包裝:6,000 系列:*
ISL6610IRZ 功能描述:IC MOSFET DRVR DUAL SYNC 16-QFN RoHS:是 類別:集成電路 (IC) >> PMIC - MOSFET,電橋驅(qū)動器 - 外部開關(guān) 系列:- 標準包裝:50 系列:- 配置:高端 輸入類型:非反相 延遲時間:200ns 電流 - 峰:250mA 配置數(shù):1 輸出數(shù):1 高端電壓 - 最大(自引導(dǎo)啟動):600V 電源電壓:12 V ~ 20 V 工作溫度:-40°C ~ 125°C 安裝類型:通孔 封裝/外殼:8-DIP(0.300",7.62mm) 供應(yīng)商設(shè)備封裝:8-DIP 包裝:管件 其它名稱:*IR2127
ISL6610IRZ-T 功能描述:IC MOSFET DRVR DUAL SYNC 16-QFN RoHS:是 類別:集成電路 (IC) >> PMIC - MOSFET,電橋驅(qū)動器 - 外部開關(guān) 系列:- 標準包裝:6,000 系列:*