
HMC1041Z
www.honeywell.com
5
Stencil Design and Solder Paste
A 4 mil stencil and 100% paste coverage is recommended for the eight electrical contact pads. Do not apply paste on the
leveling pads. The HMC1041Z has been tested successfully with no-clean solder paste.
Pick and Place
Placement is machine dependant and no restrictions are recommended, and have be tested with mechanical centering.
Placement force should be equivalent 1206 SMT resistors and enough force should be used to squeeze the paste out
from the package/contact pad overlap and to keep the package pin contacts vertical. The low mass of the HMC1041Z
ensures that very little paste is required to hold the part until reflow.
Reflow and Rework
No special profile is required for the HMC1041Z, and compatible with lead eutectic and lead-free solder paste reflow
profiles. Honeywell recommends the adherence to solder paste manufacturer’s guidelines. The HMC1041Z may be
reworked with soldering irons, but extreme care must be taken not to overheat the copper pads from the part’s fiberglass
substrate. Irons with a tip temperature no greater than 315°C should be used. Excessive rework risks the copper pads
pulling away into the molten solder.
Basic Device Operation
The Honeywell HMC1041Z magnetoresistive sensor is a Wheatstone bridge device to measure magnetic fields. With
power supply applied to a bridge, the sensor converts any incident magnetic field in the sensitive axis direction to a
differential voltage output. In addition to the bridge circuit, the sensor has two on-chip magnetically coupled straps; the
offset strap and the set/reset strap. These straps are Honeywell patented features for incident field adjustment and
magnetic domain alignment; and eliminate the need for external coils positioned around the sensors.
The magnetoresistive sensors are made of a nickel-iron (Permalloy) thin-film deposited on a silicon wafer and patterned
as a resistive strip element. In the presence of a magnetic field, a change in the bridge resistive elements causes a
corresponding change in voltage across the bridge outputs.
These resistive elements are aligned together to have a common sensitive axis (indicated by arrows on the pinouts) that
will provide positive voltage change with magnetic fields increasing in the sensitive direction. Because the output only is in
proportion to the one-dimensional axis (the principle of anisotropy) and its magnitude, additional sensor bridges placed at
orthogonal directions permit accurate measurement of arbitrary field direction. The combination of sensor bridges in two
and three orthogonal axis permit applications such as compassing and magnetometry.
The offset strap allows for several modes of operation when a direct current is driven through it. These modes are: 1)
Subtraction (bucking) of an unwanted external magnetic field, 2) null-ing of the bridge offset voltage, 3) Closed loop field
cancellation, and 4) Auto-calibration of bridge gain.
The set/reset strap can be pulsed with high currents for the following benefits: 1) Enable the sensor to perform high
sensitivity measurements, 2) Flip the polarity of the bridge output voltage, and 3) Periodically used to improve linearity,
lower cross-axis effects, and temperature effects.
Offset Strap
The offset strap is a spiral of metallization that couples in the sensor element’s sensitive axis. The offset strap measures
nominally 8 ohms, and requires 10mA for each gauss of induced field. The straps will easily handle currents to buck or
boost fields through the ±6 gauss linear measurement range, but designers should note the extreme thermal heating on
the die when doing so.
With most applications, the offset strap is not utilized and can be ignored. Designers can leave one or both strap
connections (Off- and Off+) open circuited, or ground one connection node. Do not tie both strap connections together to
avoid shorted turn magnetic circuits.
Set/Reset Strap
The set/reset strap is another spiral of metallization that couples to the sensor elements easy axis (perpendicular to the
sensitive axis on the sensor die. Each set/reset strap has a nominal resistance of 5 ohms with a nominal required peak