參數(shù)資料
型號(hào): AD9516-3/PCBZ
廠商: Analog Devices Inc
文件頁數(shù): 41/80頁
文件大?。?/td> 0K
描述: BOARD EVAL FOR AD9516-3 2.0GHZ
產(chǎn)品培訓(xùn)模塊: Active Filter Design Tools
設(shè)計(jì)資源: AD9516 Eval Brd Schematic
AD9516 Gerber Files
AD9516-3 BOM
標(biāo)準(zhǔn)包裝: 1
主要目的: 計(jì)時(shí),時(shí)鐘發(fā)生器
嵌入式:
已用 IC / 零件: AD9516-3
主要屬性: 2 輸入,14 輸出,2GHz VCO
次要屬性: CMOS、LVDS、LVPECL 輸出邏輯,ADIsimCLK&trade 圖形用戶界面
已供物品: 板,線纜,CD,電源
產(chǎn)品目錄頁面: 776 (CN2011-ZH PDF)
相關(guān)產(chǎn)品: AD9516-3BCPZ-ND - IC CLOCK PLL/VCO 2GHZ 64LFCSP
AD9516-3BCPZ-REEL7-ND - IC CLOCK PLL/VCO 2GHZ 64LFCSP
AD9516-3
Data Sheet
Rev. C | Page 46 of 80
Calculating the Fine Delay
The following values and equations are used to calculate the
delay of the delay block.
IRAMP (A) = 200 × (Ramp Current + 1)
Number of Capacitors = Number of Bits =
0 in Ramp Capacitors + 1
Example: 101 = 1 + 1 = 2; 110 = 1 + 1 = 2; 100 = 2 + 1 = 3;
001 = 2 + 1 = 3; 111 = 0 + 1 = 1.
Delay Range (ns) = 200 × ((No. of Caps + 3)/(IRAMP)) × 1.3286
( )
(
)
6
1
10
1600
0.34
ns
4
×
+
×
+
=
RAMP
I
Caps
of
No.
I
Offset
Delay Full Scale (ns) = Delay Range + Offset
Fine Delay (ns) =
Delay Range × Delay Fraction × (1/63) + Offset
Note that only delay fraction values up to 47 decimal (101111b;
0x2F) are supported.
In no case can the fine delay exceed one-half of the output clock
period. If a delay longer than half of the clock period is attempted,
the output stops clocking.
The delay function adds some jitter that is greater than that
specified for the nondelayed output. This means that the delay
function should be used primarily for clocking digital chips,
such as FPGA, ASIC, DUC, and DDC. An output with this
delay enabled may not be suitable for clocking data converters.
The jitter is higher for long full scales because the delay block
uses a ramp and trip points to create the variable delay. A slower
ramp time produces more time jitter.
Synchronizing the Outputs—SYNC Function
The AD9516 clock outputs can be synchronized to each other.
Outputs can be individually excluded from synchronization.
Synchronization consists of setting the nonexcluded outputs to
a preset set of static conditions and, subsequently, releasing
these outputs to continue clocking at the same instant with the
preset conditions applied. This allows for the alignment of the
edges of two or more outputs or for the spacing of edges,
according to the coarse phase offset settings for two or more
outputs.
Synchronization of the outputs is executed in several ways,
as follows:
By forcing the SYNC pin low and then releasing it (manual
sync).
By setting and then resetting any one of the following three
bits: the soft sync bit (Register 0x230[0]), the soft reset bit
(Register 0x000[2] [mirrored]), and the power-down
distribution reference bit (Register 0x230[1]).
By executing synchronization of the outputs as part of the
chip power-up sequence.
By forcing the RESET pin low and then releasing it (chip
reset).
By forcing the PD pin low and then releasing it (chip power-
down).
Following completion of a VCO calibration. An internal
SYNC signal is automatically asserted at the beginning and
released upon the completion of a VCO calibration.
The most common way to execute the SYNC function is to use
the SYNC pin to do a manual synchronization of the outputs.
This requires a low-going signal on the SYNC pin, which is held
low and then released when synchronization is desired. The
timing of the SYNC operation is shown in Figure 57 (using
VCO divider) and Figure 58 (VCO divider not used). There is
an uncertainty of up to one cycle of the clock at the input to the
channel divider due to the asynchronous nature of the SYNC
signal with respect to the clock edges inside the AD9516. The
delay from the SYNC rising edge to the beginning of synchronized
output clocking is between 14 and 15 cycles of clock at the
channel divider input, plus either one cycle of the VCO divider
input (see Figure 57) or one cycle of the channel divider input
(see Figure 58), depending on whether the VCO divider is used.
Cycles are counted from the rising edge of the signal.
Another common way to execute the SYNC function is by
setting and resetting the soft sync bit at Register 0x230[0] (see
Table 53 through Table 62 for details). Both setting and
resetting of the soft sync bit require an update all registers
operation (Register 0x232[0] = 1) to take effect.
相關(guān)PDF資料
PDF描述
RSC06DRXH-S734 CONN EDGECARD 12POS DIP .100 SLD
1-1624112-4 INDUCTOR 2NH 5% 0402
AD9513/PCBZ BOARD EVAL FOR AD9513
AD9516-1/PCBZ BOARD EVALUATION FOR AD9516-1
MAX876AESA+T IC VREF SERIES PREC 10V 8-SOIC
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
AD9516-4 制造商:AD 制造商全稱:Analog Devices 功能描述:14-Output Clock Generator with Integrated 1.6 GHz VCO
AD9516-4/PCBZ 功能描述:BOARD EVAL FOR AD9516-4 1.8GHZ RoHS:是 類別:編程器,開發(fā)系統(tǒng) >> 評(píng)估演示板和套件 系列:- 標(biāo)準(zhǔn)包裝:1 系列:PSoC® 主要目的:電源管理,熱管理 嵌入式:- 已用 IC / 零件:- 主要屬性:- 次要屬性:- 已供物品:板,CD,電源
AD9516-4/PCBZ 制造商:Analog Devices 功能描述:AD9516-4, PLL CLOCK SYNTHESIZER, EVALUAT
AD9516-4BCPZ 功能描述:IC CLOCK GEN 1.6GHZ VCO 64-LFCSP RoHS:是 類別:集成電路 (IC) >> 時(shí)鐘/計(jì)時(shí) - 時(shí)鐘發(fā)生器,PLL,頻率合成器 系列:- 標(biāo)準(zhǔn)包裝:1,000 系列:Precision Edge® 類型:時(shí)鐘/頻率合成器 PLL:無 輸入:CML,PECL 輸出:CML 電路數(shù):1 比率 - 輸入:輸出:2:1 差分 - 輸入:輸出:是/是 頻率 - 最大:10.7GHz 除法器/乘法器:無/無 電源電壓:2.375 V ~ 3.6 V 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:16-VFQFN 裸露焊盤,16-MLF? 供應(yīng)商設(shè)備封裝:16-MLF?(3x3) 包裝:帶卷 (TR) 其它名稱:SY58052UMGTRSY58052UMGTR-ND
AD9516-4BCPZ 制造商:Analog Devices 功能描述:CLOCK GENERATOR, 1.8GHZ, LFCSP-64