1 V Mode the internal reference may be set to 1 V by connect- ing REFSENSE and VREF together. " />
參數(shù)資料
型號: AD9280ARS
廠商: Analog Devices Inc
文件頁數(shù): 24/24頁
文件大小: 0K
描述: IC ADC CMOS 8BIT 32MSPS 28-SSOP
產品變化通告: AD9280 Pin Configuration Description Change 21/Apr/2010
Product Discontinuance 27/Oct/2011
標準包裝: 47
位數(shù): 8
采樣率(每秒): 32M
數(shù)據接口: 并聯(lián)
轉換器數(shù)目: 1
功率耗散(最大): 110mW
電壓電源: 單電源
工作溫度: -40°C ~ 85°C
安裝類型: 表面貼裝
封裝/外殼: 28-SSOP(0.209",5.30mm 寬)
供應商設備封裝: 28-SSOP
包裝: 管件
輸入數(shù)目和類型: 1 個單端,單極
AD9280
–9–
SUMMARY OF MODES
VOLTAGE REFERENCE
1 V Mode the internal reference may be set to 1 V by connect-
ing REFSENSE and VREF together.
2 V Mode the internal reference my be set to 2 V by connecting
REFSENSE to analog ground
External Divider Mode the internal reference may be set to a
point between 1 V and 2 V by adding external resistors. See
Figure 16f.
External Reference Mode enables the user to apply an exter-
nal reference to REFTS, REFBS and VREF pins. This mode
is attained by tying REFSENSE to VDD.
REFERENCE BUFFER
Center Span Mode midscale is set by shorting REFTS and
REFBS together and applying the midscale voltage to that point
The MODE pin is set to AVDD/2. The analog input will swing
about that midscale point.
Top/Bottom Mode sets the input range between two points.
The two points are between 1 V and 2 V apart. The Top/Bottom
Mode is enabled by tying the MODE pin to AVDD.
ANALOG INPUT
Differential Mode is attained by driving the AIN pin as one
differential input, shorting REFTS and REFBS together and
driving them as the second differential input. The MODE pin
is tied to AVDD/2. Preferred mode for optimal distortion
performance.
Single-Ended is attained by driving the AIN pin while the
REFTS and REFBS pins are held at dc points. The MODE pin is
tied to AVDD.
Single-Ended/Clamped (AC Coupled) the input may be
clamped to some dc level by ac coupling the input. This is done
by tying the CLAMPIN to some dc point and applying a pulse
to the CLAMP pin. MODE pin is tied to AVDD.
SPECIAL
AD876-8 Mode enables users of the AD876-8 to drop the
AD9280 into their socket. This mode is attained by floating or
grounding the MODE pin.
INPUT AND REFERENCE OVERVIEW
Figure 16, a simplified model of the AD9280, highlights the
relationship between the analog input, AIN, and the reference
voltages, REFTS, REFBS and VREF. Like the voltages applied
to the resistor ladder in a flash A/D converter, REFTS and
REFBS define the maximum and minimum input voltages to
the A/D.
The input stage is normally configured for single-ended opera-
tion, but allows for differential operation by shorting REFTS
and REFBS together to be used as the second input.
AIN
REFTS
REFBS
A/D
CORE
AD9280
SHA
Figure 15. AD9280 Equivalent Functional Input Circuit
In single-ended operation, the input spans the range,
REFBS
≤ AIN ≤ REFTS
where REFBS can be connected to GND and REFTS con-
nected to VREF. If the user requires a different reference range,
REFBS and REFTS can be driven to any voltage within the
power supply rails, so long as the difference between the two is
between 1 V and 2 V.
In differential operation, REFTS and REFBS are shorted to-
gether, and the input span is set by VREF,
(REFTS – VREF/2)
≤ AIN ≤ (REFTS + VREF/2)
where VREF is determined by the internal reference or brought
in externally by the user.
The best noise performance may be obtained by operating the
AD9280 with a 2 V input range. The best distortion perfor-
mance may be obtained by operating the AD9280 with a 1 V
input range.
REFERENCE OPERATION
The AD9280 can be configured in a variety of reference topolo-
gies. The simplest configuration is to use the AD9280’s onboard
bandgap reference, which provides a pin-strappable option to
generate either a 1 V or 2 V output. If the user desires a refer-
ence voltage other than those two, an external resistor divider
can be connected between VREF, REFSENSE and analog
ground to generate a potential anywhere between 1 V and 2 V.
Another alternative is to use an external reference for designs
requiring enhanced accuracy and/or drift performance. A
third alternative is to bring in top and bottom references,
bypassing VREF altogether.
Figures 16d, 16e and 16f illustrate the reference and input ar-
chitecture of the AD9280. In tailoring a desired arrangement,
the user can select an input configuration to match drive circuit.
Then, moving to the reference modes at the bottom of the
figure, select a reference circuit to accommodate the offset and
amplitude of a full-scale signal.
Table I outlines pin configurations to match user requirements.
REV. E
相關PDF資料
PDF描述
V150B12M150BL2 CONVERTER MOD DC/DC 12V 150W
MS3106F20-15SW CONN PLUG 7POS STRAIGHT W/SCKT
MS27467T15F35PA CONN PLUG 37POS STRAIGHT W/PINS
V150B12M150BL CONVERTER MOD DC/DC 12V 150W
AD9215BRU-65 IC ADC 10BIT 65MSPS 3V 28-TSSOP
相關代理商/技術參數(shù)
參數(shù)描述
AD9280ARSRL 功能描述:IC ADC 8BIT CMOS 32MSPS 28-SSOP RoHS:否 類別:集成電路 (IC) >> 數(shù)據采集 - 模數(shù)轉換器 系列:- 產品培訓模塊:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 標準包裝:2,500 系列:- 位數(shù):12 采樣率(每秒):3M 數(shù)據接口:- 轉換器數(shù)目:- 功率耗散(最大):- 電壓電源:- 工作溫度:- 安裝類型:表面貼裝 封裝/外殼:SOT-23-6 供應商設備封裝:SOT-23-6 包裝:帶卷 (TR) 輸入數(shù)目和類型:-
AD9280ARSZ 功能描述:IC ADC CMOS 8BIT 32MSPS 28-SSOP RoHS:是 類別:集成電路 (IC) >> 數(shù)據采集 - 模數(shù)轉換器 系列:- 標準包裝:1 系列:microPOWER™ 位數(shù):8 采樣率(每秒):1M 數(shù)據接口:串行,SPI? 轉換器數(shù)目:1 功率耗散(最大):- 電壓電源:模擬和數(shù)字 工作溫度:-40°C ~ 125°C 安裝類型:表面貼裝 封裝/外殼:24-VFQFN 裸露焊盤 供應商設備封裝:24-VQFN 裸露焊盤(4x4) 包裝:Digi-Reel® 輸入數(shù)目和類型:8 個單端,單極 產品目錄頁面:892 (CN2011-ZH PDF) 其它名稱:296-25851-6
AD9280ARSZRL 功能描述:IC ADC 8BIT CMOS 32MSPS 28SSOP RoHS:是 類別:集成電路 (IC) >> 數(shù)據采集 - 模數(shù)轉換器 系列:- 標準包裝:2,500 系列:- 位數(shù):16 采樣率(每秒):15 數(shù)據接口:MICROWIRE?,串行,SPI? 轉換器數(shù)目:1 功率耗散(最大):480µW 電壓電源:單電源 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:38-WFQFN 裸露焊盤 供應商設備封裝:38-QFN(5x7) 包裝:帶卷 (TR) 輸入數(shù)目和類型:16 個單端,雙極;8 個差分,雙極 配用:DC1011A-C-ND - BOARD DELTA SIGMA ADC LTC2494
AD9280-EB 制造商:Analog Devices 功能描述:EVAL BD FOR AD9280 - Bulk
AD9280JRS 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Analog-to-Digital Converter, 8-Bit