參數(shù)資料
型號: AD7952BSTZRL
廠商: Analog Devices Inc
文件頁數(shù): 8/32頁
文件大?。?/td> 0K
描述: IC ADC 14BIT DIFF 1MSPS 48-LQFP
標(biāo)準(zhǔn)包裝: 2,000
系列: PulSAR®
位數(shù): 14
采樣率(每秒): 1M
數(shù)據(jù)接口: 并聯(lián)
轉(zhuǎn)換器數(shù)目: 1
功率耗散(最大): 260mW
電壓電源: 模擬和數(shù)字,雙 ±
工作溫度: -40°C ~ 85°C
安裝類型: 表面貼裝
封裝/外殼: 48-LQFP
供應(yīng)商設(shè)備封裝: 48-LQFP(7x7)
包裝: 帶卷 (TR)
輸入數(shù)目和類型: 1 個(gè)差分,雙極
AD7952
Data Sheet
Rev. A | Page 16 of 32
TERMINOLOGY
Least Significant Bit (LSB)
The least significant bit, or LSB, is the smallest increment that
can be represented by a converter. For a fully differential input
ADC with N bits of resolution, the LSB expressed in volts is
N
INp-p
V
LSB
2
)
(
Integral Nonlinearity Error (INL)
Linearity error refers to the deviation of each individual code
from a line drawn from negative full scale through positive full
scale. The point used as negative full scale occurs a LSB
before the first code transition. Positive full scale is defined as a
level 1 LSBs beyond the last code transition. The deviation is
measured from the middle of each code to the true straight line.
Differential Nonlinearity Error (DNL)
In an ideal ADC, code transitions are 1 LSB apart. Differential
nonlinearity is the maximum deviation from this ideal value. It
is often specified in terms of resolution for which no missing
codes are guaranteed.
Bipolar Zero Error
The difference between the ideal midscale input voltage (0 V)
and the actual voltage producing the midscale output code.
Unipolar Offset Error
The first transition should occur at a level LSB above analog
ground. The unipolar offset error is the deviation of the actual
transition from that point.
Full-Scale Error
The last transition (from 111…10 to 111…11) should occur for
an analog voltage 1 LSB below the nominal full scale. The full-
scale error is the deviation in LSB (or % of full-scale range) of
the actual level of the last transition from the ideal level and
includes the effect of the offset error. Closely related is the gain
error (also in LSB or % of full-scale range), which does not
include the effects of the offset error.
Dynamic Range
Dynamic range is the ratio of the rms value of the full scale to
the rms noise measured for an input typically at 60 dB. The
value for dynamic range is expressed in decibels.
Signal-to-Noise Ratio (SNR)
SNR is the ratio of the rms value of the actual input signal to the
rms sum of all other spectral components below the Nyquist
frequency, excluding harmonics and dc. The value for SNR is
expressed in decibels.
Total Harmonic Distortion (THD)
THD is the ratio of the rms sum of the first five harmonic
components to the rms value of a full-scale input signal and is
expressed in decibels.
Signal-to-(Noise + Distortion) Ratio (SINAD)
SINAD is the ratio of the rms value of the actual input signal to
the rms sum of all other spectral components below the Nyquist
frequency, including harmonics but excluding dc. The value for
SINAD is expressed in decibels.
Spurious-Free Dynamic Range (SFDR)
The difference, in decibels (dB), between the rms amplitude of
the input signal and the peak spurious signal.
Effective Number of Bits (ENOB)
ENOB is a measurement of the resolution with a sine wave
input. It is related to SINAD and is expressed in bits by
ENOB = [(SINADdB 1.76)/6.02]
Aperture Delay
Aperture delay is a measure of the acquisition performance
measured from the falling edge of the CNVST input to when
the input signal is held for a conversion.
Transient Response
The time required for the AD7952 to achieve its rated accuracy
after a full-scale step function is applied to its input.
Reference Voltage Temperature Coefficient
Reference voltage temperature coefficient is derived from the
typical shift of the output voltage at 25°C on a sample of parts at
the maximum and minimum reference output voltage (VREF)
measured at TMIN, T (25°C), and TMAX. It is expressed in ppm/°C as
6
10
)
(
C)
(25
)
(
)
(
)
C
ppm/
(
MIN
MAX
REF
T
V
Min
V
Max
V
TCV
where:
VREF (Max) = maximum VREF at TMIN, T (25°C), or TMAX.
VREF (Min) = minimum VREF at TMIN, T (25°C), or TMAX.
VREF (25°C) = VREF at 25°C.
TMAX = +85°C.
TMIN = –40°C.
相關(guān)PDF資料
PDF描述
LTC2280CUP#TRPBF IC ADC DUAL 10BIT 105MSPS 64-QFN
SP3084EEN-L/TR IC TXRX RS485/RS422 ESD 8NSOIC
AD7357BRUZ-RL IC ADC 14BITDUAL 4.MSPS 16TSSOP
SP3083EEN-L/TR IC TXRX RS485/RS422 ESD 14NSOIC
SP3081EEN-L/TR IC TXRX RS485/RS422 ESD 8NSOIC
相關(guān)代理商/技術(shù)參數(shù)
參數(shù)描述
AD795AH 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Voltage-Feedback Operational Amplifier
AD795BH 制造商:未知廠家 制造商全稱:未知廠家 功能描述:Voltage-Feedback Operational Amplifier
AD795JN 制造商:Analog Devices 功能描述:Operational Amplifier, Single AMP, Bipolar/JFET, 8 Pin, Plastic, DIP
AD795JR 功能描述:IC OPAMP JFET 1.6MHZ LN 8SOIC RoHS:否 類別:集成電路 (IC) >> Linear - Amplifiers - Instrumentation 系列:- 標(biāo)準(zhǔn)包裝:2,500 系列:Excalibur™ 放大器類型:J-FET 電路數(shù):1 輸出類型:- 轉(zhuǎn)換速率:45 V/µs 增益帶寬積:10MHz -3db帶寬:- 電流 - 輸入偏壓:20pA 電壓 - 輸入偏移:490µV 電流 - 電源:1.7mA 電流 - 輸出 / 通道:48mA 電壓 - 電源,單路/雙路(±):4.5 V ~ 38 V,±2.25 V ~ 19 V 工作溫度:-40°C ~ 85°C 安裝類型:表面貼裝 封裝/外殼:8-SOIC(0.154",3.90mm 寬) 供應(yīng)商設(shè)備封裝:8-SOIC 包裝:帶卷 (TR)
AD795JR-REEL 功能描述:IC OPAMP JFET 1.6MHZ LN 8SOIC RoHS:否 類別:集成電路 (IC) >> Linear - Amplifiers - Instrumentation 系列:- 標(biāo)準(zhǔn)包裝:50 系列:- 放大器類型:J-FET 電路數(shù):2 輸出類型:- 轉(zhuǎn)換速率:13 V/µs 增益帶寬積:3MHz -3db帶寬:- 電流 - 輸入偏壓:65pA 電壓 - 輸入偏移:3000µV 電流 - 電源:1.4mA 電流 - 輸出 / 通道:- 電壓 - 電源,單路/雙路(±):7 V ~ 36 V,±3.5 V ~ 18 V 工作溫度:-40°C ~ 85°C 安裝類型:通孔 封裝/外殼:8-DIP(0.300",7.62mm) 供應(yīng)商設(shè)備封裝:8-PDIP 包裝:管件