參數(shù)資料
型號: 74HCT190DB
廠商: NXP SEMICONDUCTORS
元件分類: 通用總線功能
英文描述: Presettable synchronous BCD decade up/down counter
中文描述: HCT SERIES, SYN POSITIVE EDGE TRIGGERED 4-BIT BIDIRECTIONAL DECADE COUNTER, PDSO16
文件頁數(shù): 2/13頁
文件大?。?/td> 101K
代理商: 74HCT190DB
December 1990
2
Philips Semiconductors
Product specification
Presettable synchronous BCD decade
up/down counter
74HC/HCT190
FEATURES
Synchronous reversible counting
Asynchronous parallel load
Count enable control for synchronous expansion
Single up/down control input
Output capability: standard
I
CC
category: MSI
GENERAL DESCRIPTION
The 74HC/HCT190 are high-speed Si-gate CMOS devices
and are pin compatible with low power Schottky TTL
(LSTTL). They are specified in compliance with JEDEC
standard no. 7A.
The 74HC/HCT190 are asynchronously presettable
up/down BCD decade counters. They contain four
master/slave flip-flops with internal gating and steering
logic to provide asynchronous preset and synchronous
count-up and count-down operation.
Asynchronous parallel load capability permits the counter
to be preset to any desired number. Information present on
the parallel data inputs (D
0
to D
3
) is loaded into the counter
and appears on the outputs when the parallel load (PL)
input is LOW. As indicated in the function table, this
operation overrides the counting function.
Counting is inhibited by a HIGH level on the count enable
(CE) input. When CE is LOW internal state changes are
initiated synchronously by the LOW-to-HIGH transition of
the clock input. The up/down (U/D) input signal determines
the direction of counting as indicated in the function table.
The CE input may go LOW when the clock is in either
state, however, the LOW-to-HIGH CE transition must
occur only when the clock is HIGH. Also, the U/D input
should be changed only when either CE or CP is HIGH.
Overflow/underflow indications are provided by two types
of outputs, the terminal count (TC) and ripple clock (RC).
The TC output is normally LOW and goes HIGH when a
circuit reaches zero in the count-down mode or reaches “9”
in the count-up-mode. The TC output will remain HIGH
until a state change occurs, either by counting or
presetting, or until U/D is changed. Do not use the TC
output as a clock signal because it is subject to decoding
spikes. The TC signal is used internally to enable the RC
output. When TC is HIGH and CE is LOW, the RC output
follows the clock pulse (CP). This feature simplifies the
design of multistage counters as shown in Figs 5 and 6.
In Fig.5, each RC output is used as the clock input to the
next higher stage. It is only necessary to inhibit the first
stage to prevent counting in all stages, since a HIGH on
CE inhibits the RC output pulse as indicated in the function
table. The timing skew between state changes in the first
and last stages is represented by the cumulative delay of
the clock as it ripples through the preceding stages. This
can be a disadvantage of this configuration in some
applications.
Fig.6 shows a method of causing state changes to occur
simultaneously in all stages. The RC outputs propagate
the carry/borrow signals in ripple fashion and all clock
inputs are driven in parallel. In this configuration the
duration of the clock LOW state must be long enough to
allow the negative-going edge of the carry/borrow signal to
ripple through to the last stage before the clock goes
HIGH. Since the RC output of any package goes HIGH
shortly after its CP input goes HIGH there is no such
restriction on the HIGH-state duration of the clock.
In Fig.7, the configuration shown avoids ripple delays and
their associated restrictions. Combining the TC signals
from all the preceding stages forms the CE input for a
given stage. An enable must be included in each carry
gate in order to inhibit counting. The TC output of a given
stage it not affected by its own CE signal therefore the
simple inhibit scheme of Figs 5 and 6 does not apply.
相關PDF資料
PDF描述
74HCT190N Presettable synchronous BCD decade up/down counter
74HCT190PW Quadruple 2-Line To 1-Line Data Selectors/Multiplexers 16-PDIP -40 to 85
74HCT191 Presettable synchronous 4-bit binary up/down counter
74HC191 Presettable synchronous 4-bit binary up/down counter
74HCT191DB Presettable synchronous 4-bit binary up/down counter
相關代理商/技術參數(shù)
參數(shù)描述
74HCT191D 功能描述:計數(shù)器 IC SYNC BIN U/D COUNTER RoHS:否 制造商:NXP Semiconductors 計數(shù)器類型:Binary Counters 邏輯系列:74LV 位數(shù):10 計數(shù)法: 計數(shù)順序: 工作電源電壓:1 V to 5.5 V 工作溫度范圍:- 40 C to + 125 C 封裝 / 箱體:SOT-109 封裝:Reel
74HCT191D,652 功能描述:計數(shù)器 IC SYNC BIN U/D COUNTER RoHS:否 制造商:NXP Semiconductors 計數(shù)器類型:Binary Counters 邏輯系列:74LV 位數(shù):10 計數(shù)法: 計數(shù)順序: 工作電源電壓:1 V to 5.5 V 工作溫度范圍:- 40 C to + 125 C 封裝 / 箱體:SOT-109 封裝:Reel
74HCT191D,653 功能描述:計數(shù)器 IC SYNC BIN U/D COUNTER RoHS:否 制造商:NXP Semiconductors 計數(shù)器類型:Binary Counters 邏輯系列:74LV 位數(shù):10 計數(shù)法: 計數(shù)順序: 工作電源電壓:1 V to 5.5 V 工作溫度范圍:- 40 C to + 125 C 封裝 / 箱體:SOT-109 封裝:Reel
74HCT191D-T 功能描述:計數(shù)器 IC SYNC BIN U/D COUNTER RoHS:否 制造商:NXP Semiconductors 計數(shù)器類型:Binary Counters 邏輯系列:74LV 位數(shù):10 計數(shù)法: 計數(shù)順序: 工作電源電壓:1 V to 5.5 V 工作溫度范圍:- 40 C to + 125 C 封裝 / 箱體:SOT-109 封裝:Reel
74HCT191N 功能描述:計數(shù)器 IC SYNC BIN U/D COUNTER RoHS:否 制造商:NXP Semiconductors 計數(shù)器類型:Binary Counters 邏輯系列:74LV 位數(shù):10 計數(shù)法: 計數(shù)順序: 工作電源電壓:1 V to 5.5 V 工作溫度范圍:- 40 C to + 125 C 封裝 / 箱體:SOT-109 封裝:Reel